Autovalores e Autovetores

Marina Andretta / Franklina Toledo Baseado no livro Cálculo Numérico, de Neide B. Franco.

3 de setembro de 2012

Introdução

Definição: um escalar $\lambda \in R$ é um autovalor da matriz A, se existe um vetor não nulo $v \in R^n$, tal que $Av = \lambda v$.

Todo vetor v que satisfaz essa relação é chamado de autovetor de A correspondente ao autovalor λ .

Exemplo: Seja
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$$
 e $v = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, temos que:

$$Av = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 8 \\ 12 \end{bmatrix} = 4 \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Polinômio Característico

Temos que $Av = \lambda v$, logo podemos escrever $Av - \lambda v = 0$, ou ainda,

$$(A - \lambda I)v = 0$$

se o $det(A - \lambda I) \neq 0$ então o sistema linear acima tem uma única solução v = 0. Como estamos procurando $v \neq 0$, tal que $Av = \lambda v$, vamos impor que $det(A - \lambda I) = 0$, ou seja,

$$P(\lambda) = det(A - \lambda I) = 0$$

em que $P(\lambda)$ é um polinômio em λ de grau n e os autovalores procurados são as raízes deste polinômio.

 $P(\lambda)$ é chamado de **Polinômio Característico da matriz** A.

Exemplo

Exemplo: Seja $A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$ e $v = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, o polinômio característico de A é dado por:

$$P(\lambda) = \det(A - \lambda I) = \begin{bmatrix} 1 - \lambda & 2 \\ 3 & 2 - \lambda \end{bmatrix} = 0$$

$$P(\lambda) = (1 - \lambda)(2 - \lambda) - (3 * 2) = 2 - 3\lambda + \lambda^2 - 6 = 0$$

$$P(\lambda) = \lambda^2 - 3\lambda - 4 = 0$$

Cujas raízes são: $\lambda_1=$ 4 e $\lambda_2=-1$.

Objetivo

Estudar métodos numéricos para a determinação de autovalores e seus correspondentes autovetores de uma matriz A de ordem n.

Métodos numéricos:

- métodos que determinam o polinômio característico;
- métodos que determinam alguns autovalores;
- Métodos que determinam todos os autovalores.