Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação

Solução de equações não-lineares: método de Newton

Prof. Marina Andretta

Problema

Estamos interessados em encontrar $x \in \mathbf{R}$ solução do seguinte problema:

$$f(x)=0,$$

com f função de IR em IR.

Desenvolvimento do método de Newton

Suponha que $f \in C^2[a, b]$. Seja $\bar{x} \in [a, b]$ uma aproximação de x^* (solução) tal que $f'(\bar{x}) \neq 0$ e $|x^* - \bar{x}|$ é "pequeno".

Considere o polinômio de Taylor de primeiro grau para f(x) expandido em torno de \bar{x}

$$f(x) = f(\bar{x}) + (x - \bar{x})f'(\bar{x}) + \frac{(x - \bar{x})^2}{2}f''(\xi(x)),$$

Desenvolvimento do método de Newton

Como $f(x^*) = 0$, temos que

$$f(x^*) = 0 = f(\bar{x}) + (x^* - \bar{x})f'(\bar{x}) + \frac{(x^* - \bar{x})^2}{2}f''(\xi(x^*)).$$

Ou seja,

$$x^* \approx \bar{x} - \frac{f(\bar{x})}{f'(\bar{x})}.$$

Desenvolvimento do método de Newton

Assim, o método de Newton consiste em, dada uma aproximação inicial x_0 da solução, calcular a aproximação

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

a cada iteração $k \ge 0$, até que o critério de convergência seja satisfeito.

Interpretação do método de Newton

Geometricamente, o que o método de Newton faz é o seguinte:

- 1. Dado um ponto x_k , calcula a reta tangente a f em x_k .
- 2. Encontra o ponto \bar{x}_k no qual a reta tangente passa pelo zero.
- 3. Toma $x_{k+1} = \bar{x}_k$.

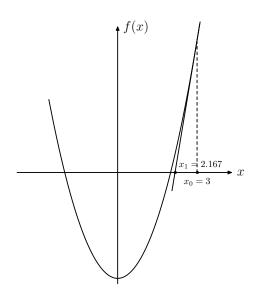
Considere a equação

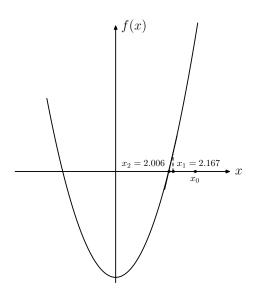
$$x^2-4=0,$$

que tem solução $x^* = 2$.

Note que

$$f(x) = x^2 - 4$$
 e $f'(x) = 2x$,





Usando ponto inicial $x_0 = 3$, a resolução desta equação, usando o método de Newton, é dada por:

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 3 - \frac{f(3)}{f'(3)}$$

$$x_1 = 3 - \frac{3^2 - 4}{2 \times 3} \approx 2.16666667$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 2.16666667 - \frac{f(2.16666667)}{f'(2.16666667)}$$

$$x_2 = 2.16666667 - \frac{2.16666667^2 - 4}{2 \times 2.16666667} \approx 2.00641026$$

Usando ponto inicial $x_0 = 3$, a resolução desta equação, usando o método de Newton, é dada por:

k	X _k	$f(x_k)$
0	3.00000000	5.00000000
1	2.16666667	0.69444444
2	2.00641026	0.02568212
3	2.00001024	4.09602097E-05
4	2.00000000	1.04858344E-10

Considere agora a equação

$$xe^{-x^2}=0,$$

que tem solução $x^* = 0$.

Note que

$$f(x) = xe^{-x^2}$$
 e $f'(x) = e^{-x^2}(1 - 2x^2)$,

Usando ponto inicial $x_0 = 1$, a resolução desta equação, usando o método de Newton, é dada por:

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 1 - \frac{f(1)}{f'(1)}$$

$$x_1 = 1 - \frac{e^{-1}}{e^{-1}(1-2)} = 2$$

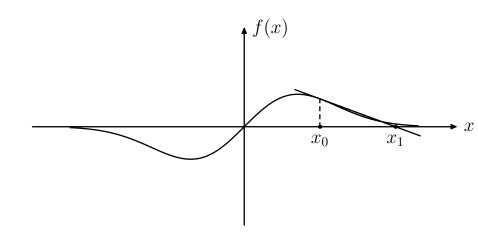
$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 2 - \frac{f(2)}{f'(2)}$$

$$x_2 = 2 - \frac{2e^{-2^2}}{e^{-2^2}(1-22^2)} \approx 2.285714$$

Na verdade, a sequência gerada pelo método de Newton, neste caso, é dada por

$$x_{k+1} = x_k - \frac{x_k e^{-x_k^2}}{e^{-x_k^2} (1 - 2x_k^2)} = x_k - \frac{x_k}{(1 - 2x_k^2)}.$$

Note que, a partir de $x_k=1$, esta é uma sequência crescente. Ou seja, ela não converge para a solução $x^*=0!$.



Convergência

Seja $f \in \mathcal{C}^2[a,b]$. Se $x^* \in [a,b]$ é tal que $f(x^*) = 0$ e $f'(x^*) \neq 0$, então existe um $\delta > 0$ tal que o método de Newton gera uma sequência $\{x_k\}$ convergente para x^* para qualquer aproximação inicial $x_0 \in [x^* - \delta, x^* + \delta]$.

Mais ainda, se o método de Newton converge, sua convergência é quadrática.