Copyright
by Emily Quesada Herrera
2022



INSTITUTO NACIONAL DE MATEMATICA PURA E APLICADA

On uncertainty principles, Fourier optimization
and the Riemann zeta-function

by
Emily Quesada Herrera

supervised by

Prof. Emanuel Carneiro

DISSERTATION

Presented to the Post-graduate Program in Mathematics of the
Instituto de Matematica Pura e Aplicada
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

Rio de Janeiro, 2022



Dedicado a todxs lxs que han luchado por nuestro derecho de ser nosotrrs mismaxs: a lrs
que estuvieron y ya no estdan; lrs que siguen; y lrs que vendrdn.
In loving memory of Prof. William Alvarado (University of Costa Rica), teacher and

friend to generations of students.



Acknowledgements

I would like to thank everyone who has helped make this possible. I thank my family for
their patience and support, and all my friends, teachers, colleagues and collaborators that
I have met throughout this journey.

I thank my advisor Emanuel Carneiro for his excellent mentorship, constant motivation
and support, mathematical and otherwise. I also thank Prof. Micah Milinovich (University
of Mississippi) for all his advice and mathematical discussions.

I thank all the commitee members: Christoph Aistleitner (Graz University of Technol-
ogy), Mikhail Belolipetsky (IMPA), Emanuel Carneiro, Micah Milinovich, Carlos Gustavo
Moreira (IMPA), and Kristian Seip (NTNU), for their insightful questions and comments.

I acknowledge financial support from CNPqg-Brazil and the STEP Programme of ICTP-

Italy.

II



Abstract

This Ph.D thesis is rooted in the first five research articles of the author, throughout

which we study topics at the interface of analytic number theory and harmonic analysis.

From a harmonic analysis perspective, we consider a generalized version of the sign
uncertainty principle for the Fourier transform, first proposed by Bourgain, Clozel and
Kahane and revisited by Cohn and Gongalves. In our rough, general framework, we are

able to identify sharp constants in some cases.

From a number theory perspective, we study Fourier optimization tools related to bounds
in the theory of the Riemann zeta-function and other L-functions, and also to new estimates
regarding the distribution of integers and primes represented by quadratic forms. Moreover,
we study the number variance of zeta zeros. In particular, conditionally on the Riemann
hypothesis and a conjecture for the pair correlation of zeta zeros in longer ranges (which
examines how often gaps between zeros can be close to a fixed nonzero value), we prove
a conjecture of Berry (1988) for this number variance, in the non-universal regime where

random matrix models do not correctly describe the distribution of zeta zeros.
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Resumo

Esta tese de doutorado estd baseada nos primeiros cinco artigos de pesquisa da au-
tora, onde estudamos topicos na intersecao entre teoria analitica dos numeros e andlise

harmonica.

Desde a perspetiva de analise harmonica, consideramos uma versao geral do principio da
incerteza de sinais para a transformada de Fourier, proposto originalmente por Bourgain,
Clozel e Kahane e revisitado por Cohn e Gongalves. Na nossa formulagao geral, conseguimos

identificar constantes 6timas em alguns casos.

Desde a perspetiva de teoria dos numeros, estudamos ferramentas de otimizacao de
Fourier relacionadas com cotas na teoria da fungao zeta de Riemann e outras L-funcgoes, e
também com novas estimativas sobre a distribuicao de inteiros e primos representados por
formas quadraticas. Adicionalmente, estudamos a variancia do numero de zeros da funcao
zeta. Em particular, condicionalmente a hipdtese de Riemann e a uma conjetura sobre a
correlagao de pares de zeros em intervalos maiores (que examina a frequéncia com a qual os
espacos entre zeros podem ser aproximadamente uma quantidade nao nula dada), provamos
uma conjetura de Berry (1988) para esta variancia, no regime nao universal onde os modelos

de matrizes aleatdrias nao descrevem corretamente a distribuicao dos zeros da funcao zeta.
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Chapter 1

Introduction

This thesis lies at the interface of analytic number theory and harmonic analysis. We
investigate the following topics: (i) the uncertainty principle in Fourier analysis and its
connection to the sphere packings problem; (ii) the distribution of integers and primes
represented by quadratic forms; (iii) the theory of the Riemann zeta-function and other
L-functions. The exploration of these topics generated the following research articles, on
which this thesis is based:

[Al] Generalized sign Fourier uncertainty (with E. Carneiro), Ann. Sc. Norm. Super.
Pisa, Cl. Sci. DOI: 10.2422/2036-2145.202105_026.

[A2] Fourier optimization and quadratic forms (with A. Chirre), Q. J. Math. 73, no. 2
(2022), 539-577. DOI: 10.1093/qmath/haab041.

[A3] The second moment of S,(t) on the Riemann hypothesis (with A. Chirre), Int. J.
Number Theory 18, no. 6 (2022), 1203-1226. DOI: 10.1142/S1793042122500610.

[A4] On the number variance of zeta zeros and a conjecture of Berry (with M. M. Lugar
and M. B. Milinovich), preprint arXiv:2211.14918.

[A5] On the g-analogue of the pair correlation conjecture via Fourier optimization, Math.
Comp. 91 (2022), 2347-2365. DOI: 10.1090/mcom/3747.

To tackle many of the questions in the above articles, we combine theoretical tools
from harmonic analysis, approximation theory, and analytic and algebraic number theory,
sometimes with additional computational tools such as numerical optimization methods

(including semidefinite programming in particular - see Section [6.3)). In the next sections,

we will present a brief overview of the topics studied in these articles, their background, and

the tools involved in some of our main results. First, we must say some words on notation.

1.1 Notation

Throughout this thesis, we use the following classical notation and conventions.

1



10.

11.

12.

13.

1.2

. Define the Fourier transform of a function f € L'(R%) by

~

FAAE) = 7O = [ e f(a) da,

. For s € C we write s = o + it, where o and t are real numbers.

. We say that o = O(f), a « 8, and a < 8 when |a| < Cf for some constant C' > 0,

and they may be used interchangeably. In the subscript, we indicate the parameters
on which such constant C' may depend. We say that a ~ 8 when o < 8 and 8 < «.
Additionally, the notation o = O*() means that |a| < S.

. We denote f = o(g) when lim, ., f(x)/g(x) = 0. We also denote f ~ g when
1.

limg o0 f()/9(x)

. B-(z) denotes the open ball of center  and radius ¢ in R%. If = 0 we may simply

write B;. The Lebesgue measure of a measurable set X is denoted by |X]|, and Ix

denotes its characteristic function. The dimension d will be clear from context.

. The function sgn : R — R is defined by sgn(t) = 1, if ¢ > 0; sgn(0) = 0; and

sgn(t) = —1,if t < 0.

. We denote by |z| the integer part of z, i.e. the largest integer smaller than or equal

to x; and {z} := x — |z| denotes its fractional part.

. We say that a measurable function f : R? — R is eventually non—negativeﬂ if f(x) =0

for all sufficiently large |z|.

. For x € R, we denote x, := max{x,0}.

For a radial function G : R? — C, we use the notation G(z) = G(|z|).
Sums and products over the variable p run through all prime numbers 2, 3, 5...
I'(s) denotes the Gamma function.

The function which is identically equal to 0 (resp. 1) is denoted by O (resp. 1).

Uncertainty principles in Fourier analysis

The Fourier transform is certainly one of the most fundamental objects in mathematics

and applied mathematics, as it is used to model a variety of oscillatory phenomena. The ex-

pression Fourier uncertainty appears recurrently in the literature (see [10], 43] for surveys),

Tt will be convenient here not to consider only continuous functions in the definition of eventual non-
negativity, as other works in the literature do. Note, however, that we require that f has a non-negative sign
for all |x| > r(f), and not only almost everywhere with respect to the Lebesgue measure. Similarly, we may
define the concepts of eventually non-positive and eventually zero.

2



describing many qualitative and quantitative variants of the same underlying principle: that
one cannot have an unrestricted control of a function and its Fourier transform simultane-
ously. In [12], Bourgain, Clozel and Kahane introduced a novel uncertainty principle, in
connection to a problem in algebraic number theory. It essentially says that a function f
and its Fourier transform f cannot have their negative mass arbitrarily concentrated near
the origin, when facing a competing condition that f(0) < 0 and f(0) < 0. The authors
realized that the essence of the problem was captured by eigenfunctions of the Fourier trans-
form with eigenvalue s = +1. Later, Cohn and Gongalves [35] proposed a suitable variant
of the sign uncertainty principle associated to the eigenvalue s = —1. To formulate this

precisely, for an eventually non-negative function f : RY — R, we define
r(f) :==inf{r >0 : f(x) =0 for all |x| > r}.

Let s € {+1, —1} denote a sign, and consider the following family of functions:
A (d) = { f € LY(R™)\{0} continuous, even, real-valued and such that f = sf; }

sf(0) <0, f is eventually non-negative.

We then define

A*(d) := inf
)= ()

Bourgain, Clozel and Kahane [I2] (for s = 1) and Cohn and Gongalves [35] (for s = —1)
showed that

A¥(d) ~ V.

Historically, quests to find the sharp forms of functional inequalities have been non-trivial
and beautiful problems, whose solution often reveals new information about the underlying
structures. In this particular case, the sharp forms and extremizers have only been identified
in four special cases. Cohn and Gongalves observed that the solutions in the cases (s,d) =
(—=1,1), (—1,8) and (—1,24) follow from the recent breakthroughs in the sphere packing
problem by Cohn and Elkies [34], Viazovska [103] and Cohn, Kumar, Miller, Radchenko
and Viazovska [37]. Cohn and Gongalves then go further by adapting their techniques, and
developing new ones, to settle the case (s,d) = (+1,12).

In Chapter 2| based on the manuscript [A1], we propose a generalized weighted version of
the sign uncertainty principle in Euclidean space. In our setup, the signs of a function and its
Fourier transform resonate with a generic given function P outside of a ball. One essentially
wants to know if and how soon this resonation can happen, when facing a suitable competing
weighted integral condition. All the four eigenvalues of the Fourier transform appear in this
formulation, but the new possibilities go far beyond. Formally, Let P € L}OC(Rd) be a real-
valued function that is either even or odd. That is, P(—z) = (—1)*P(z) for some v € {0, 1}.

3



Then, we consider the following class of functions:

f e LY(RY)\{0} continuous, real-valued and such that f=sif;
Pfe LY(R%);

SRd Pf<0;

Pf is eventually non-negative.

As(Ps;d) =

We also define

A¥(P:d) = inf Pf).
s(P;d) feAlzl‘l(P;d)T( f)

The original version of the problem corresponds to the particular case P = 1. In the first
part of the chapter (Theorems and , we attempt to push the existing techniques
to their limit, to discuss general situations where the class A% (P;d) is non-trivial and the
presence of suitable admissible conditions that give a generic formulation of the principle.
In the second part of the chapter (Theorem and its two corollaries), we introduce the
novel mechanism of dimension shifts, which allows us to relate some of the sign uncertainty
principles under different weights and dimensions. This is especially useful when dealing
with singular weights, and allows us to fully settle the problem (finding sharp constants
and extremizers) in 14 new situations with polynomial weights, modulo symmetries given
by the orthogonal group (Corollary . For instance, we obtain the following two sharp

constants.

Theorem 1.1 (c.f. Corollary 2.8). Let
Py(x1,...2q) = x1; Po(x1,22,23,24) =(x§f+x%(m2—x3)—xl(xg—i-Q:c%)—azg+x%$3+2x2x§)x4.

Then,
A*[(P1;22) =2 and A*|(Py4) =2

Another interesting special case is that of the sign uncertainty principle with power weights
P(x) = |z|":

Theorem 1.2 (c.f. Corollary . Let d e N with d = 5 and let v > —d be a real number.

Assume that v ¢ (=52, =4E3) . Then,

\/min{dv |d+29]} « Aga(je];d) « v/max{d +~, —}.

The case v = 0 corresponds to the original formulation by Bourgain, Clozel, and Kahane. In
the singular case where —d < v < 0, there are crucial obstructions to the classical arguments
used to establish the sign uncertainty principles in previous works (see the remarks in Section
. New tools were therefore needed, and this is where our dimension shifts mechanism,

and other new ideas, came into play.



1.3 Theory of the Riemann zeta-function and other
L-functions

In this section, we briefly introduce the topics of the articles [A3], [A4], and [A5], which
we will present in detail in Chapters and [0

1.3.1 The Riemann zeta-function and the distribution of its zeros

Understanding the behavior of the Riemann zeta-function and the distribution of its
zeros is a crucial problem in number theory, being related to the distribution of primes.

The Riemann zeta-function is defined in the half-plane Res > 1 by
© 4 1\"!
((s) = )] —~ = 11 (1 - ps> : (1.3.1)
n=1 p

The Euler product - the product over primes in (1.3.1]) - is the starting point of the connection

between this function and the distribution of primes. By partial summation, for Res > 1,

((s) =—s foo ;jr}l do + —>

1 3—1.

Since the integral in the right-hand side is convergent and analytic for Re s > 0, this shows
that ((s) can be analytically continued to a meromorphic function in the half-plane Re s > 0.

Moreover, it satisfies the functional equation
C(s) = 257 L sin(ms/2)T(1 — 5)¢(1 — s),

which implies that it can be extended to a meromorphic function in the entire plane, with
a simple pole at s = 1. From the functional equation, one can see that ((—2n) = 0 for
all positive integers n, and these are called the trivial zeros. Furthermore, from the Euler
product and the functional equation, one can see that all non-trivial zeros of ((s) must lie
on the critical strip {s € C : 0 < Res < 1}. The Riemann hypothesis (RH), conjectured
in 1859 [91], states that all non-trivial zeros actually lie on the critical line, Res = 3. For
further background on the theory of {(s), and its connection to the distribution of primes,
see [41], 169, 84 [102].

Throughout this thesis, we will also sometimes consider other families of L-functions,
which are generalizations of the Riemann zeta-function in different contexts. See [69, Chap-
ter 5] for a general framework regarding the theory of L-functions. In particular, in Chapter
[6] we work primarily with Dirichlet L-functions, which were originally introduced to study
primes in arithmetic progressions. For a positive integer ¢, a Dirichlet character x (mod q)
is a character of the multiplicative group of units (Z/qZ)*, extended to a completely mul-
tiplicative g-periodic function over all integers by taking x(n) = 0 whenever ged(n,q) # 1
(see e.g. [41l 69] for details). We may consider the Dirichlet L-function defined initially

5



(and then analytically continued), for Res > 1, by

o= 54T (20)

n=1 P

In Chapter [0} we also describe and work with a family of automorphic L-functions, following
a framework in [26]. In Chapter |3, we describe and work with Hecke L-functions, which
generalize Dirichlet L-functions to algebraic number fields, since, as we shall explain therein,

they can codify information about quadratic forms.

Returning to the Riemann zeta-function, let N(¢) be the number of zeros p =  + iy of
¢(s) such that 0 < v <t and 0 < 8 < 1 (counted with multiplicity, and where the zeros
with v = t are counted with weight %) The classical Riemann von-Mangoldt formula states
that

t t t 7

1
N(t):Q—l %—2+8+S()+O(t>. (1.3.2)

Here, for t # 7,

S(t) = largc (1 +zt>

where the argument is obtained by a continuous variation along the straight line segments

joining the points 2, 2 + it and % + it, and we take arg((2) = 0. If t = ~, we define

S(t) =ii_r)r(1] S(t—l—a);—S(t—a).

Furthermore, we may define the complex logarithm of {(s) on the critical line as
log ((5 + it) :=log |((5 + it)| + imS(t).

By equation and the facts that S(t) « logt and SO ) dt « logT, we can think
of S(t) as the difference between the actual and average number of zeros around height t.
Therefore, to understand the distribution of the zeros, we wish to understand the statistical
and oscillatory behavior of S(t) and log |((5 + it)].

From ([1.3.2)), we expect that there are about § zeros of ((s) with ordinates in the interval

[t,t + 12"5 ] when 0 <t < T and T is large. We define the number variance of the zeros of

((s) by

LT [N(t + lgg‘;) N(t) — 5]2 dt. (1.3.3)

This quantity has been studied by a number of authors, for instance [5] [6l [45] 46| [47, [50].
By ([1.3.2)), up to a small error, the integral in (|1.3.3)) is equal to

JT [s(t+ 2z5) —sw] a

0




1.3.2 The pair correlation conjecture

Before discussing the known properties of S(¢), the number variance of zeta zeros, and
our contributions in the theory, we must make a brief interlude on the pair correlation of
the zeros of ((s). In 1973, Montgomery [81] studied finer aspects of the vertical distribution
of the zeros of ((s), assuming RH. While studying this distribution, he formulated his pair

correlation conjecture, which states that

> 1~ N(D) Lﬁ {1 - (Si?rZ“)Q} du, (1.3.4)

0<y,y'<T

2
0<y—/'<33%

as T — oo, for any fixed 8 > 0, where the sum runs over the ordinates of pairs of non-trivial
zeros of ((s).

By (1.3.2)), the pair correlation conjecture gives an asymptotic formula for the number

. . . . 2

of pairs of zeros whose distance is at most § times the average gap between zeros, ﬁ.
Based on ([1.3.4), Montgomery further conjectured that the imaginary parts of the zeros of
¢(s) behave like the eigenvalues of a random matrix from a certain probability distribution

called the Gaussian Unitary Ensemble (GUE).

Montgomery wanted to understand sums involving the differences (v — +'), such as the
left-hand side of (1.3.4). With this goal in mind, for any R € L'(R) such that Re LY(R),

Fourier inversion yields the convolution formula

2. R (W) w(y —9') = TlogT JR F(a) R(a) da,

2w
0<v,y'<T

= ﬁ, and Montgomery’s function F'(«) is the (suitably

weighted and normalized) Fourier transform of the distribution function of the differences
(v —7/). Tt is defined as

where we introduce a weight w(u) :

27T . /
F(a) = F(a,T) := T qp(y — ~' 1.3.

where @ € R and T > 2. Thanks to the convolution formula, to understand sums over
pairs of zeros, and therefore expressions such as the left-hand side of , it is useful to
study the asymptotic behavior of F(«), for large T. Montgomery [81] and Goldston and
Montgomery [58] showed, assuming RH, that

F(o,T) = (T721°log T + |al) (1 + 0 (4 /k)lg()lg()iT)) , (1.3.6)

uniformly for 0 < |o| < 1, as T' — o0. Moreover, Montgomery conjectured that F'(«,T) ~ 1,
for |a| = 1 as T' — oo, uniformly for o in compact intervals. This is the strong pair correlation
conjecture, and it implies ((1.3.4) by taking suitable functions R in the convolution formula.
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1.3.3 Selberg’s central limit theorem

We now return to the theory of S(t), with the goal of understanding the distribution of
the zeros of ((s). A celebrated and classical result of Selberg is that the real and imaginary
parts of the logarithm of the Riemann zeta-function are normally distributed on the critical
line. He proved this by estimating moments of S(¢), first assuming RH and then later
without any conditions with the same main term and a slightly weaker error term [93] [94].
Assuming RH, Selberg showed that, for k€ N and T > 3,

S(t)?* dt = k!((z;;));kT(log log T)* {1 + O(loglth)} : (1.3.7)

O

In other words, the moments of S(¢) are Gaussian. In this way, Selberg [95] deduces a

central limit theorem for S(t):

lim l meas< T <t <27 : (1)

T>w T A/ 3 loglogT

This tells us 7S(t) is normally distributed for ¢ € [T,27] with mean 0 and variance

b
€la,b] p = \/1% Je_x2/2 dz. (1.3.8)

% loglog T, when T is large. Selberg (unpublished) also considered the moments of log |¢ (% +
it)|. The details were worked out by Tsang [80], who used Selberg’s methods to prove, as-
suming RH, that

T

2k (1 . . (2]{))' k 1
flog IC(5 +it)| dt = T!Q%T(loglogT) 1+0 7loglogT . (1.3.9)
0

These moments can be calculated unconditionally with a slightly weaker error term. A
corresponding central limit theorem for log | (% +it)|, analogous to (1.3.8)), follows from the
work Selberg and Tsang. See Radziwill and Soundararajan [90] for a recent and simplified

proof of Selberg’s central limit theorem for log [((5 + it)|.

1.3.4 The variance in Selberg’s central limit theorem

Selberg modeled log ((s) near the critical line using information from the primes and
the zeros of ((s). He arrives at the main term in (1.3.7) using information from the primes.

The information about the zeros is cleverly contained in his error term.

Recall that the variance of a distribution is given by its second moment, which corre-
sponds to taking k = 1 in (1.3.7). Goldston [53] gave a refined estimate for the variance of
S(t) in Selberg’s central limit theorem utilizing finer information from both the primes and
the zeros of ((s) in his representation of log ((s). He does so through methods relying, in

part, on Montgomery’s work [81] on the pair correlation of the zeros of ((s). Assuming RH,
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Goldston shows that
¢ T T
a
f\S(t)\Q t = 5y loglogT + g + o(T), (1.3.10)
0

as T' — oo, where the constant a is given by

o0
1 = 1 1)\ 1 F(a)
a—§ ’YO+ZZ<’I’)’L2_m>p7n+J‘ o2 da 5 (1311)
1

and ~y is Euler’s constant. Here, the term with F(«) is defined as in (1.3.)), and it captures
the information from the zeros of {(s). As initially defined, the constant a actually depends
on T. In Lemma we show that this dependence is mild (see also [53, Theorem 2]).

1.3.5 The antiderivatives of S(t)

Littlewood [76, [77] and Selberg [93], 04] investigated the behavior of S(t) using its an-
tiderivatives Sy (t). Setting So(t) = S(t) we define, for n > 1 an integer and ¢ > 0,

¢
Si(t) = f Spr(r) dr + 6,
0

where ¢, is a specific constant depending on n (see the full definition in Chapter . As-
suming the Riemann hypothesis, Littlewood showed that, for n > 1,

Sn(t):0<(logt> and f Sn( = O(T),

loglogt)n+1

revealing a powerful cancellation due to the oscillatory behavior of S(t). Fujii [49] obtained
the first-order term in the even moments of S, (¢) using Selberg’s method. In the manuscript
[A3], we estimate the second moment of S,,(¢) up to the second-order term, using Goldston’s
method.

Theorem 1.3 (c.f. Theorem. Assume the Riemann hypothesis. Forn > 1, as T — o0,

we have

JT! ()\thfc T r | UOO Fla) 4 —1]+O<T\/W>.

0 T + 27‘(2 (IOgT 2n O4271-"-2 « m (log T)2n+1/2

We give expressions for the constants C,, in Chapter While our approach is based
on generalizing Goldston’s method, there are additional technical challenges involved. In
particular, we introduce a family of new auxiliary functions associated to S, (t) and take
advantage of their properties to reveal a surprising cancellation between two of the main
terms. Furthermore, there are new difficulties from dealing with both the real and imaginary

parts of the logarithm of ((s), which is necessary to model S, (t) in terms of information
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from both the primes and the zeros of ((s). We give further details on the manuscript [A3]
in Chapter [4

1.3.6 Number variance of zeta zeros

In the manuscript [A4], we study the number variance of zeta zeros, defined in (|1.3.3).

Up to a small error, this equals

J;)T [S (t " 139) - S@T dt. (1.3.12)

In 1988, Berry [5] conjectured an asymptotic formula for ((1.3.12), by using a conjectural

model of the imaginary parts of zeros of ((s) as the eigenvalues of a quantum Hamiltonian

operator. This model gives more precise predictions than those of GUE matrices: in the
universal regime of his model, when 6 = o(logT), his conjectured asymptotic formula for
(1.3.12)) matches exactly the variance of GUE random matrices; while the non-universal
regime of his model, when § » logT, is no longer described by the predictions of GUE,
and incorporates additional input from the primes. In 1990, Fujii [46] proved an asymptotic
formula for , assuming RH, in the universal regime where § = o(log T'). In particular,
assuming RH and the strong pair correlation conjecture, he proves Berry’s conjecture in the

universal regime.

Our main result in the manuscript [A4] is an asymptotic formula for , assuming
RH, for any 6 = o(log®T) (see Theorem below). In particular, this includes both the
universal and non-universal regimes, and allows a better understanding of the behavior for
different sizes of §. To achieve this, we must overcome significant technical challenges, as
new main terms arise and we require a more careful consideration of the error terms. Our
result relies on finer information from both the primes and the zeros of ((s), requiring
information beyond pair correlation. In particular, we require a variation of Montgomery’s
function F(«) introduced by Chan [23] in his study of the pair correlation of zeros in longer
ranges. To the best of our knowledge, this is the first time that information about pair
correlation in longer ranges has been rigorously applied to study the number variance of

zeta zeros.

In the universal regime where 6 = o(logT), our result reduces to Fujii’'s. Moreover,
assuming RH and a generalization of the strong pair correlation conjecture due to Chan,
our result implies Berry’s conjecture in the non-universal regime. In Chapter 5 we will give

the details of these results and say more on their history.

1.3.7 The pair correlation of zeros of families of L-functions

In this section, we briefly describe the manuscript [A5], which we will describe in detail

in Chapter @ In [A5], our starting point is the following relation, proved by Goldston [54]:
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the pair correlation conjecture (|1.3.4)) is equivalent to the statement

1 b+¢
EJ F(a,T) da ~ 1, (1.3.13)
b

as T — oo, for any fixed b > 1 and ¢ > 0, where F' is defined in (|1.3.5]).

Recently, Carneiro, Chandee, Chirre, and Milinovich [16] studied these averages of F'
over bounded intervals, by developing a general theoretical framework that relates them
to some extremal problems in Fourier analysis. This was inspired by some constructions
of Goldston [53] and Goldston and Gonek [56]. As a corollary of their general theoretical
framework, and approximating the solutions of the associated Fourier optimization problems
via numerical examples, they showed that, for any b > 1 and for sufficiently large fixed ¢,
as T — oo, we have

b+¢
0.927818 + o(1) < A F(o, T) dov < 1.330174 + o(1). (1.3.14)

b
Montgomery [81] also suggested the investigation of the pair correlation of zeros of a family
of Dirichlet L—functions in the g-aspect. One wishes to study the distribution of the low-
lying zeros of L(s,x), on average over Dirichlet characters y (mod ¢), and over Q < g <
2Q. Following the framework of [27], we define the g-analogues as followsﬂ Assume the
generalized Riemann hypothesis for Dirichlet L-functions (GRH). Let ® : R — R be such
that

where ® denotes the Mellin transform. Let W be a smooth, non-negative function with

compact support in (1, 2). We define the g-analogue of N(T) as

Z (;]/Q 2 Z@Z’Yx ’

X (mod q) Vx

where the second sum (indicated by the superscript *) is over all primitive Dirichlet char-
acters (mod ¢), and the last sum is over all non-trivial zeros 1/2 + i, of L(s, x). Define

the g-analogue of F'(a,T) as

Fafa) = Fofa,Q) = i D02 D) SIbn0@
q X (mod q) 7x

In analogy to Montgomery’s results for F'(«), Chandee, Lee, Liu and Radziwilt [27] proved
an asymptotic formula for Fg(«) for |a| < 2, showing, in particular, that Fg(a) ~ 1 when
1 < |a| < 2. Moreover, they conjectured that Fg(a) ~ 1 for all || = 1, in analogy with

2For simplicity, here we present a special case of the framework in [27]. In Chapter @, we present a
slightly more general framework
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Montgomery’s original conjecture for F'(«). Our main result in the manuscript [A5] gives

evidence for this conjecture.

Theorem 1.4 (c.f. Theorem . Let b > 1, and assume GRH for Dirichlet L-functions.
For sufficiently large fixed ¢, as Q — 0, we have

0.982144 + o(1) < 7 Lbﬂg Fy(a, Q) da < 1.077542 + o(1).
We highlight that our upper and lower bounds are very close to the conjectured value of
1. To prove our result, we develop a framework for estimating these integrals over bounded
intervals via Fourier analysis, extending that of [16]. We take advantage of the new informa-
tion available when |a| € [1, 2), from [27]. This leads to slightly different Fourier extremal
problems. After arriving at our Fourier extremal problems, we then numerically optimize
the bounds. Since the functionals in the associated extremal problems are not smooth,
we apply the principal axis method of Brent [13], which is an algorithm for unconstrained

non-smooth optimization.

1.4 Integers represented by quadratic forms

In this section, we briefly describe the research article [A2], which we will explore in
Chapter Here, we combine tools from Fourier analysis, analytic number theory and
algebraic number theory to obtain several new estimates regarding integers and primes
represented by quadratic forms. We have two main themes that are ubiquitous in this
investigation. First, we use the well-known theme that propositions about quadratic forms
can be stated in two other equivalent languages: ideals of number fields and lattices. We use
all three points of view to our advantage in different parts of the article. Our second theme
is the use of Fourier analysis, in the following way: we begin by finding a summation formula
that connects our object of study with an arbitrary function and its Fourier transform; then,
we choose an appropriate test function that recovers the desired information in an optimized

manner. We give further background on these topics in Chapter [3]

Given a positive-definite quadratic form f(u,v) = au? + buv + cv? and an integer £ > 2,

we first consider the congruence sum

Z re(n), (1.4.1)

n<w
£n

where 7¢(n) is the number of representations of n by the form f. This is motivated by its
utility in sieve methods. When f(u,v) = u? 4+ v? and £ = 1, estimating (.4.1]) is the Gauss
Circle Problem. We show:

Theorem 1.5 (c.f. Theorem . Let f(u,v) = au® + buv + cv? be a positive definite

quadratic form of discriminant —D = b — 4ac < 0 and let £ > 1 be an integer. Then, for
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z = 3 we have

2
ri(n) = —=gl)x+ Ofy z1/3 ,
lgﬁx \/E ( )
£n

where
1 .
g(l) = ﬁ{u’ veEZ:0<u,v<landl| f(u,v)}

This improves the error term in a result of Zaman [109, Proposition 7.1}, who established
a similar result with error term O M(xl/ 2). We also make the dependence on f and ¢ explicit
in the error term; see Theorem below for the full statement. Higher moments of 7¢(n)
(with ¢ = 1) have also been studied by Blomer and Granville [§].

Following the themes above, we first find and prove a summation formula associated
with the coefficients r¢(n) over multiples of ¢, relating it to an arbitrary function and its
Fourier transform. These types of Fourier summation formulas are classical, being related
to the modularity of a certain theta series associated to f and to a discrete periodic function
X, the latter which allows us to filter the congruence condition ¢ | n. To prove the specific
formula we need, we use Poisson summation for the lattice associated to the form f, and

the discrete Fourier expansion of the function y.

Using Theorem and Selberg’s sieve, we obtain a Brun-Titchmarsh-type upper bound

for the number of primes represented by f in short intervals, of the form

Y
logy’

mp(@) = ms (@ —y) < (Cp + 0(1)) (1.4.2)
in the range z'/3*¢ < y < 2%/°, where m¢(x) is the number of primes less than z that are
represented by f. Our constants are explicit; for instance, we are especially interested in

the following new corollary:

x

+ /7)) — <28 +0(1)— 1.4.3
(a4 V) = 7y (0) < (B84 o) g (1.4.3)
where h(—D) is the class number. Our result ([1.4.2) improves another result of Zaman [109)
Theorem 1.4], which established a similar bound in longer intervals, in the range zl/2te <
y < x. Then, we used our corollary (|1.4.3) and a Fourier optimization approach of Carneiro,
Milinovich and Soundararajan [22] to obtain a Cramér-type result on the maximum gap

between consecutive primes represented by a given form f.

Theorem 1.6 (c.f. Corollary . Let f(u,v) = au® + buv + cv? be a positive definite
quadratic form of discriminant —D = b*> — 4ac < 0. Let Dn,f be the n-th prime number
represented by f. Assuming the generalized Riemann hypothesis for Hecke L-functions, we
have
limsup 224 ~ P 4 937 h(—D). (1.4.4)
n—00 \/]T,fbgpn,f
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Our corollary ((1.4.3) plays a role in optimizing the value of the constant 1.837 above,
and here the extended range that comes from (|1.4.2) is required. The constant 28 in (1.4.3))
plays a role in this optimization, and optimizing this latter constant required obtaining a

good explicit dependence on the parameter £ in Theorem above.

Returning to our two themes, here it is convenient to work in the language of ideals of
quadratic fields, to combine the machinery of Hecke characters and Hecke L-functions with
the approach of Carneiro, Milinovich and Soundararajan. The approach is based on the
explicit formula, which is another Fourier summation formula relating prime numbers with
the zeros of an L-function. In our case, we establish a version of the explicit formula that
averages over all Hecke characters in a given congruence class group. Then, we take advan-
tage of heuristics from the uncertainty principle discussed above, combined with numerical
experimentation, to find a (near) optimal function that establishes Theorem (see Section
for the relation between the uncertainty principle and this problem).
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Chapter 2

Uncertainty principles in Fourier

analysis

This chapter is comprised of the paper [A1]. Our goal is to formulate a generalized version
of the sign uncertainty principle for the Fourier transform, and identify sharp constants
where possible. Furthermore, we introduce a new mechanism to establish sign uncertainty
principles (see Theorem , which works in some settings where the previous tools in the

literature may not easily apply.

2.1 Introduction

2.1.1 Background

As mentioned in the Introduction, the uncertainty principle roughly states that one can-
not have an unrestricted control of a function and its Fourier transform simultaneously. The
uncertainty paradigm is directly related to different sorts of Fourier optimization problems.
Generically speaking, these are problems in which one imposes suitable conditions on a func-
tion and its Fourier transform, and seeks to optimize a certain quantity of interest. There
are surprising applications of such problems, for instance, in the theory of the Riemann
zeta-function [I8, [19] 28], in bounding prime gaps [22] and in the theory of sphere packings
[34, 37, [103].

A classical version of Heisenberg’s uncertainty principle establishes that a function and
its Fourier transform cannot simultaneously have their mass arbitrarily concentrated near

the origin. This can be mathematically formulated as (see, for instance, [43], Corollary 2.8])

4 ~
A1 < =l £, - [lel 1, (2.1.1)

for any f e L?(R%). One may ask what happens if, instead of the total mass, one considers
the concentration of negative mass of a function and its Fourier transform near the origin.

In [12], Bourgain, Clozel and Kahane introduced a novel uncertainty principle that addresses
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this question, in connection to the study of real zeros of zeta functions over number fields
and bounds for the associated discriminants. In their setup, the trade-off is between the
sign of a function at infinity (or more precisely, the last sign change of the function), and
a competing local condition for the transform at the origin. This uncertainty principle was
later quantitatively refined by Gongalves, Oliveira e Silva and Steinerberger in [61], who also
studied its extremizers. More recently, Cohn and Gongalves [35] went further in the topic,
building on the fact that the original uncertainty principle of Bourgain, Clozel and Kahane
[12] is suitably associated to eigenfunctions of the Fourier transform with eigenvalue +1, by

posing an analogous principle associated to the eigenvalue —1.

The sign uncertainty principles of [12, 35, [61] can be formulated as follows. Recall that

for an eventually non-negative function f : R* - R, we defined
r(f) :=inf{r >0 : f(z) = 0 for all || > r}.
Let s € {+1,—1} denote a sign, and consider the following family of functions:

f e LY(R?)\{0} continuous, even, real-valued and such that fe LY(RY):;
As(d) =4 sf(0) <0, f(0) <0;
fand s f are eventually non-negative.
(2.1.2)

We then define
As(d) :== inf r(f).r(sf), (2.1.3)

feAs(d)

~

which turns out to be a natural object of interest since r(f) .r(s f ) is invariant under

rescalings of the function f. The following assertion holds.

Theorem 2.1 (Bourgain, Clozel and Kahane [12] (s = +1) ; Cohn and Gongalves [35]
(s = —1)). Let s € {+1,—1}. Then there exist strictly positive universal constants ¢ and C
such that

eVid < Ay(d) < CVd. (2.1.4)

In particular note that Ag(d) > 0. Quantitatively speaking, from [12] B35, [61], estimate
[@1.4) holds with ¢ = (2me)™ Y2 for s = +1; C = (2n)"1/2 4 04(1) for s = +1; and
C =0.3194...+04(1) for s = —1. An important step in the proof of Theorernis the fact

that one can reduce the search for the infimum in (2.1.3)) to a restricted class A**(d) < As(d)
given by

f e LY(R?)\{0} continuous, radial and real-valued: f=sf;
AF(d) = f(0) =0;

f is eventually non-negative.

This is how the eigenfunctions of the Fourier transform appear in connection to these prob-

lems. The existence of extremizers for Ag(d) (i.e. functions that realize the infimum in
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(2.1.3)) in this restricted class was established in [61] for s = +1 and in [35] for s = —1.

The exact values of Ag(d) are only known in four particular cases, discovered in some
of the most influential works at the interface between analysis and number theory over
the last years. Firstly, the celebrated works on the sphere packing problem via linear
programming bounds [34] 37, [103] yield the sharp versions of the (—1)-uncertainty principle
in dimensions d = 1,8 and 24 as corollaries (see the extended remark at the end of this
subsection for the precise connection). In these cases, the optimal lower bound can be
established via the classical Poisson summation formula (for the Fg-lattice in dimension
d = 8, and for the Leech lattice in dimension d = 24). The formula then hints on the
appropriate interpolating conditions of the extremal functions. In dimension d = 1, the
function f(z) = sin?(nz)/(2% — 1) is a bandlimited extremizer; see also the earlier work of
Logan [78]. In each of the dimensions d = 8 and 24, a radial Schwartz extremal eigenfunction
(with prescribed values for the function and its radial derivative at the radii {v/2n;n €
N}) is constructed via the impressive machinery introduced by Viazovska [103] on Laplace
transforms of modular forms; see also the recent work [36]. Secondly, the recent work of
Cohn and Gongalves [35] establishes the sharp version of the (+1)-uncertainty principle of
Bourgain, Clozel and Kahane in the special dimension d = 12, where the optimal lower
bound now comes from a Poisson summation formula for radial Schwartz functions on R'2
derived from the Eisenstein series Fg, and an explicit radial Schwartz extremal eigenfunction

is constructed by further exploring the ideas of Viazovska [103]. We now compile such results.
Theorem 2.2. Let s € {+1,—1} and let Ags(d) be defined by (2.1.3). Then

(i) (Corollaries of Cohn and Elkies [34] (d = 1), Viazovska [103] (d = 8) and Cohn,
Kumar, Miller, Radchenko and Viazovska [37] (d = 24)) .

A1) =1; A 1(8)=v2; A_4(24) =2. (2.1.5)
(ii) (Cohn and Gongalves [35]).

A1(12) = V2. (2.1.6)

It is not known in general whether the search for the infimum in (2.1.3]) can be restricted
to Schwartz functions. This is only known to be true in the cases of Theorem and
in the additional case (s,d) = (+1, 1), recently established in [60]. It is conjectured that
A_1(2) = (4/3)"* and that A 1(1) = (2¢)~'/2, where ¢ = (1 4+ /5)/2 is the golden ratio;
see [09, Conjectures 1.6 and 1.7]. The recent work [59] considers extensions of the (+1)-sign
uncertainty principles to a more abstract operator setting, with very interesting applica-
tions to Fourier series and spherical harmonics, among others, and it will have important

connections to the present paper. In a nutshell, this is the state of the art in this problem.

A natural question that arises is the following: would there be suitable formulations of

the sign uncertainty principle associated to the remaining eigenvalues +i7 This was one of
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the original motivations for this work and, as we shall see, it will drive us to more general

versions of such principles in the Euclidean space.

Remark. (Connection between sign Fourier uncertainty and sphere packing). In [34, The-
orem 3.2], Cohn and Elkies considered the following Fourier optimization problem, now

regarded as the linear programming bound for the sphere packing problem. Consider the

class
g € L'(RY)\{0} continuous, even, real-valued and such that § e L'(R%);
0) =g(0) =1;
Ap(a) = | 9O =90 | ,
—g is eventually non-negative;
g is non-negative;
and define
Arp(d) == inf r(—g).
Lp(d) geALp(d) =9

They showed that, given any sphere packing P < R of congruent balls, its upper density
A(P) (i.e. the fraction of the space covered by the balls in the packing; see [34, Appendix
A] for details) satisfies

A(P) < App(d)? |B1l.

Numerical experiments suggested that this bound was sharp in dimensions d = 1,2,8 and
24, the latter three for the honeycomb, Eg and Leech lattices, respectively. It was already
pointed out in [34] that Arp(1) = 1. In [37], Viazovska found the extremal function to show
that A7 p(8) = v/2, hence establishing the optimality of the Fg-lattice in d = 8. Later, Cohn,
Kumar, Miller, Radchenko and Viazovska [37] found the extremal function to show that
Arp(24) = 2 and established the optimality of the Leech lattice in d = 24. It is a classical
theorem, proved by other methods, that the honeycomb lattice is optimal if d = 2; see
e.g. [67]. Hence, it is conjectured that App(2) = (4/3)"/%, but the corresponding extremal
function has not yet been discovered. The connection between the (—1)-uncertainty principle
and the linear programming bound is simple: if g € Ay p(d) observe that f :=g—g e A_1(d)
and that r(f) < r(—g). Hence, one plainly has A_;(d) < Arp(d). It is conjectured that, in
fact, one has A_;(d) = Arp(d) for all d > 1 (see [34, Conjecture 8.2], [35] and [59]) but, so
far, this has only been established in the cases given by .

2.1.2 Generalized sign Fourier uncertainty

In what follows we write 2 = (21,22,...,2q) € R? for our generic variable (from now
on used for both f and f) Related to , there exist Heisenberg-type principles in the
literature that say that f and f cannot be simultaneously concentrated around the zero set
of a function @ : R¢ — R. For instance, when @ is a non-degenerate quadratic form on R¢,
a corollary of a theorem of Shubin, Vakilian and Wolff [96] (see also [10, Corollary 2.20])
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establishes

1113 < ¢ |Qf, - [@f], (2.1.7)
for f € L?(R?), while Demange [42] establishes when Q(x) = |z1|"|z2]"2 ... |zg|"

with 7; > 0 for 1 < 7 < d. In a vague analogy to such results, we now consider a situation
where the signs of f and f at infinity are prescribed by a given generic function P that we

now describe.

Throughout the paper we let P : R? — R be a measurable function, not identically zero
on R4\ {0}, verifying:

(P1) Pe Li (RY).
(P2) P is either even or odd. We let v € {0,1} be such that
P(—z) = (—-1)"P(x) (2.1.8)
for all 2 € RY.

We shall also consider the following pool of additional assumptions. In each of our results

below, an appropriate subset of these may be required.

(P3) P is annihilating in the following sense: if f € L!'(R?) is a continuous eigenfunction of

the Fourier transform such that Pf is eventually zero then f = 0.
(P4) P is homogeneous. That is, there is a real number v > —d such that
P(ox) = §"P(x) (2.1.9)
for all § > 0 and z € R?,

(P5) The sub-level set Ay = {x € R? : |P(z)| < A} has finite Lebesgue measure for some
A>0.

(P6) The sub-level set Ay = {z € R? : |P(z)| < A} is bounded for some A > 0.

(P7) Pe L®

loc(Rd)'
(P8) Pe 1”& LY(R?) for all A > 0.
(P9) (Sign density) For each x € R%\{0} such that P(z) # 0 we have

lim inf |{y e R?: P(y)P(x) > 0} N Bg(:v)|

0.
e—0 ’Bs(w)’ i
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Remark. Condition (P3) above holds in a variety of situations. A simple one would be
if the set {z € RY : P(z) # 0} is dense in R? (in this case, Pf eventually zero implies
that f has compact support). Another one is if the set {x € R? : P(z) = 0} has finite
Lebesgue measure (hence (P6) implies (P5) that implies (P3)). In this case, Pf eventually
zero implies that f is supported on a set of finite measure, and hence f = 0 by Lemma [2.12
below. Note also that (P1) and (P4) imply (P8).

We investigate the sign uncertainty principles in a more general setting as follows. In
our formulation, it will be convenient to think of the competing conditions at the origin
as weighted integrals over R?, via the Fourier transform. In this sense, the conditions
sf(0) < 0 and f(O) < 0 appearing in should be viewed as (g, sf <0 and Spa f <0,
respectively. Assume that our function P verifies properties (P1), (P2), (P3) and (P4) above
and let s € {+1,—1} be a sign. Consider the following class of functions, with suitable parity
and integrability conditions (note that we move to a slightly different notation to denote

the dependence on the function P),

f e LY(R?)\{0} continuous, real-valued and such that f(—x) = (—1)"f(z);
f.Pf.PfeL'(RY);

fpa PF <0, Spas(=i)°'PF < 0;

Pf, s(—i)*Pf are eventually non-negative.

AS(P; d) =

(2.1.10)
As before, let us define

Ay(P;d) = inf Pf).r(s(—i)PF). 2.1.11
(Pid)= ok \/r(Pf).r(s(-i)Pf) (2.1.11)
Note that if f € As(P;d), any rescaling fs(x) := f(dz), for § > 0, also belongs to As(P;d),
and the product r(Pf) .r(s(—z’)tPfA) is invariant. This is due to condition (P4).

A particularly interesting case is when P is a homogeneous polynomial of degree ~ €
N u {0} in d variables. In this case, the integral conditions in the definition of As(P;d)
are equivalent to conditions given by the differential operator associated to P applied to f
and f and evaluated at the origin (provided f and f are sufficiently smooth). Note that,
in principle, we do not require in this case that |z|7 f, |z|Y ]? e L'(R%), but only the minimal
integrability condition Pf, Pf € LY(R%). The class As(d) considered in corresponds
to the case P = 1.

The question on whether the uncertainty principle holds for the families A4(P;d), and
even the question on whether these families are at least non-empty, may possibly depend on
the function P; and finding necessary and sufficient conditions seems to be a subtle issue.

Before moving into that discussion, let us observe that we can restrict the search to a certain
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subclass A¥(P;d) < Ag(P;d) of eigenfunctions defined by

f e LY(RH)\{0} continuous, real-valued and such that f = si*f;

azpiay - { PIEEED
S]Rd Pf<0;
Pf is eventually non-negative.
(2.1.12)
We also define
A¥(P;d)= inf r(Pf). (2.1.13)

feA¥ (P;d)
Assuming that the class As(P;d) is non-empty, we claim that A¥(P;d) is also non-empty
and that
Ay(P;d) = AX(P;d). (2.1.14)

To see this, start with any function f € As(P;d). By taking an appropriate rescaling fs(z) :=
f(0x), we may assume that r(Pf) = r(s(—i)tPf). Observe that s(—i)tfe As(P;d) and let

~

w=f+s(—i)f.

Then @ = si*w, {ps Pw < 0 and r(Pw) < r(Pf). Note that w is not identically zero. In
fact, if w = 0, we would have Pf and s(—i)*P f = —Pf eventually non-negative, which
would make Pf eventually zero. By condition (P3) we would have f = 0, a contradiction.

Hence w € A%(P;d) and does a job at least as good as the original f.

This is how the eigenfunctions of the Fourier transform (now with all possible eigenval-

ues) play a role in this discussion. Observe that we may consider directly the eigenfunction

extremal problem described in (2.1.12) - (2.1.13]). In this case, we do not need to assume

conditions (P3) and (P4) for our function P : R? — R, leaving us essentially with the fully

generic setup of (P1) and (P2). When we consider the eigenfunction formulation in the

results below, the reader should keep in mind the original formulation (2.1.10) - (2.1.11)),
and identity (2.1.14]), if applicable.

Note that all of our conditions (P1) — (P9) are invariant under rotations and reflections.

Letting O(d) be the group of linear orthogonal transformations in R, if R € O(d) one can
verify that A*(P;d) = A*(P o R;d) and As(P;d) = As(P o R;d) by a suitable change of

variables.

It is important to emphasize that we do not identify functions P that are equal almost

everywhere with respect to the Lebesgue measure. In fact, even if two functions P, and P»

are equal a.e., the two problems (2.1.12)) - (2.1.13)) that they generate may be very different.

Consider for example, in dimension d = 1, P; = 1 and Py (x) = 1 for all z € R\{an}nez,
Py(a,) = —1, where {ap}nen is a given sequence of points with lim,_« |a,| = . Any
function f € A¥(Ps;1) will necessarily have zeros at a, for n > ng. In this regard, even
problems where P(z) = 0 a.e. are non-trivial, and we quickly realize that we are in a vastly

uncharted territory.
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We first move in the direction of identifying some important situations when these classes

are non-empty and providing reasonable upper bounds.

Theorem 2.3 (Non-empty classes and upper bounds). Let P : R — R be a function
verifying properties (P1), (P2) and (P8). Assume that P = H.Q, where H : RY — R is
a homogeneous and harmonic polynomial of degree £ = 0, and Q : R? — R is eventually
non-negative. Then A%(P;d) is non-empty. If, in addition, P verifies (P4), letting ¢ as in
(2.1.8) and v > —d as in we have

A:(P;d)g\/max{d+€+’y’€_7} L oq),

27
with the implied constant being universal; in fact, when si*t* = —1 and —d < v < —%l we
have
A¥(P;d) = 0.

Remark. Note that in Theorem we may have £ > ~. A simple example would be
P(z) = sgn(x1), in which H(x) = 1, and Q(z) = sgn(x1)/z1 for z1 # 0 and zero otherwise.
We shall not be particularly interested in more explicit quantitative estimates for the upper

bounds here.

There is an interesting relationship between the sign uncertainty principles and other
classical uncertainty principles. For our purposes, the relevant inequality would be an
analogue of , with L'-norms on the right-hand side. For instance, a basic application
of the Hausdorff-Young inequality yields

1£15 < 11 1F 1k

for any f € L?(RY), and similar ideas used to prove (2.1.1]), coupled with the Hausdorff-
Young inequality, yield
1£15 < 4 |21 fllv |1 f ] (2.1.15)

for any f € L2(R?) (see, for instance, [43, Corollary 2.6 and Section 3]). By a change of
variables given by any R € O(d) we see that holds with the function z; replaced by
any linear homogeneous polynomial in x1,z2,...,z4. Motivated by such examples we now
define a class of admissible functions P that will play an important role in our study. As
we shall see, this will be an asset (but not the only one) in establishing sign uncertainty

principles.

Definition 2.4 (Admissible functions). A function P : R? — R werifying properties (P1)
and (P2) is said to be admissible if there exists an exponent ¢ with 1 < g < o0 and a positive
constant C(P;d;q) such that:

(i) For all f € LY(RY), with f = +i*f and Pf € L*(RY), we have

1 fllq < gQ(P; d;q) | Pfa (2.1.16)



(i1) If ¢ > 1 we have P € Lﬁ;C(Rd). If ¢ = 1 we have lim, o+ | P|r0(p,) = 0

The fact that f = 44" f, together with the Hausdorff-Young inequality, directly implies
that || fq < |f|li for all 1 < ¢ < oo. Hence, if (2.1.16) holds for ¢ = 1, it holds for any
exponent 1 < g < oo with C(P;d;q) < C(P;d;1). The finiteness of the sub-level sets is

related to the concept of admissibility as our next result shows.

Theorem 2.5 (Sufficient conditions for admissibility). Let P : R? — R be a function
verifying properties (P1), (P2) and (P5). Then inequality holds with ¢ = 1. In
particular, P is admissible with respect to ¢ = c. If, in addition, P verifies property (P4)
with degree v = 0 in , we can bound the constant C(P;d;1) as:

(i) If v = 0 then
C(P;d; 1) < (essinf|P|) ™" < o0, (2.1.17)
(i) If v > 0 then
d i
C(P;d:1) < (1 + %) Kl + 7) |A1|] . (2.1.18)

Remark. Note that in the case P homogeneous of degree v > 0, the sub-level set Ay has

finite measure (for any A > 0) if and only if
|, IP@I dotw) < o,
gd-1

where o denotes the surface measure on the unit sphere S%~1 c R

In light of example (2.1.15]), note that Theorem is not a necessary condition for a
function P to be admissible. We are now in position to present a general version of the sign

uncertainty principle associated to a function P.

Theorem 2.6 (Sign uncertainty). Let P : R? — R be a function verifying properties (P1)
and (P2). Assume that the class A%(P;d) is non-empty and that P is admissible with
respect to an exponent 1 < q < 0. Then there exists a positive constant C*(P;d;q) such
that

AX(P;d) = C*(P;d;q). (2.1.19)

Moreover,

(i) If P verifies properties (P5), (P7) and (P9), there exist extremizers for AX(P;d).

(ii) If P wverifies properties (P4) and (PT7), with degree v = 0 in (2.1.9) and K :=
1P|l oo (By)

(d + ’Yq/) F(d/2)> (d+IW/) (2120)

Cj*(]j§(iQQ) = d
272 (2KC)?

1Throughoutthischaptelr1/q+1/q’::1,
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where C' = C(P;d;q) as in (2.1.16)). If ¢ = 1 (and hence v > 0), the right-hand side
of [@2.1.20) should be understood as (2KC)~1/7.

Remark. The constant C*(P;d;q) in will be described in the proof. In the homo-
geneous case (ii) above, under (P5), we can use the fact that C(P;d;q) < C(P;d;1) and
(2.1.17)) - (2.1.18) to get explicit lower bounds in (that could be then optimized over
q). In the original case P = 1 of Theorem we can simply choose ¢ = o0 to recover the
lower bound ﬁ(lf(d + 1))1/d > YL a5 in [12, Theorem 3] and [35, Theorem 1.4]. We

27 \2 V2me
shall see that, once the non-emptiness and admissibility conditions are in place, the proof of

(2.1.19) is rather simple, following the somewhat rigid original scheme of Bourgain, Clozel
and Kahane [I2]. One then realizes that the crux of the matter here is in fact obtaining
such conditions, and that is where results like Theorems and enter. When ¢ = o0,
there is an alternative approach to arrive at the same qualitative conclusion as in
via the operator framework of [59, Theorem 1], as communicated to us by F. Gongalves. In
that statement one could consider (X, ) = (Y,v) = (R%, |P|dz); p=q¢=2;b=c=1; and
F = {(sgn(P)f, s-sgn(P)f); f e AX¥(P;d)}. The relevant condition that needs to be checked
is that | sgn(P)f| po(ra ) < a | sgn(P)f| L1 (ra ). This follows from the admissibility condi-
tion with ¢ = oo (which for instance, under (P5), follows from Theorem since
Isgn(P) fllromiyy < [fleomesy < C(P;d;0)|Pflrimey = C(P;d;0)| sgn(P) f| L1 ma -
Then, with r = r(Pf), [59, Theorem 1, Eq. (1.4)] yields ||P]IBT L= (4 C(P;d; oo))_l, qual-
itatively as in below. There are also occasions, as exemplified in , where the

admissibility exponent ¢ is not, in principle, 1 or co.

As already mentioned, Theorems [2.3] and can be used to generate a great variety
of examples where the hypotheses of Theorem [2.6] are verified. A simple example would
be P(x) = |z|?, for v = 0, while a less straightforward one could be P : R® — R given by
P(z) = (23423 —223) (¢ +23+223). The odd functions P(z) = sgn(x1) and P(z) = z; also
verify the hypotheses of Theorem (the latter is admissible directly from ), and
these provide two simple versions of sign uncertainty principles associated to the eigenvalues
+i in all dimensions. In the case P(x) = sgn(z) in dimension d = 1, the integral conditions
defining the class As(sgn(z); 1) can be recast in terms of the sign of the Hilbert transform
at the origin. A different sign uncertainty principle for bandlimited functions involving the

Hilbert transform appears in [59, Theorem 4.2].

2.1.3 Dimension shifts

There will be occasions where the admissibility inequality , or suitable variants
of it, are not, in principle, available (see, for instance, the last remark in Section . We
present now a different tool to obtain the sign uncertainty that may be helpful in such
circumstances. The intuitive idea is to allow ourselves some movement between different di-
mensions in order to fall in a favourable situation as in Theorem[2.6l The classical Bochner’s

relation will be a crucial ingredient in this process and, therefore, radial functions play an
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important role. In some special situations we are able to go further and establish a surpris-
ing identity connecting the sign uncertainty in different dimensions. The reach of the next
result will be exemplified in its two companion corollaries. In what follows, for a function
H :R? - R we denote its orbit under the action of the group O(d) by

HoO(d):={HoR:RY >R : ReO(d)}.

Theorem 2.7 (Dimension shifts). Let ¢ > 0 be an integer and let v(¢) € {0,1} be such that
t(f) = £ (mod?2). Let P:R¥*2¢ - R be a function verifying properties (P1), (P2) and (P3)
that is radial. Write P(z) = Py(|z]). Let P : RY — R be a function verifying properties
(P1) and (P2) of the form

Ple) = H(z) Po(J2]) Q). (2.1.21)

where H : R* — R is a non-zero homogeneous and harmonic polynomial of degree ¢ and
Q :R? 5 R is an even non-negative function, homogeneous of degree 0. If AX(P;d+20) is
non-empty, then A:(_l)(ru)m/g (ﬁ, d) is also non-empty and

~

If, in addition, P verifies property (P6), Q = 1 and H € (x1x2...24)00(d) (0 < ¢ < d), the
converse holds: A*(P;d + 2{) is non-empty if and only if A:(_l)(t(e)+z>/2 (]3, d) s non-empty
and

~

AT(Pyd +20) = A7 w02 (Pid). (2.1.23)

In general, it is not clear that we can reverse inequality . One of the main
obstacles is to show that the search for the infimum on the right-hand side of can
be reduced to functions f of the form H fy with fy radial (which may simply not be true
in general). In the case presented in we overcome this and other barriers. Our
proof also yields the following fact: if there exist extremizers for either side of , then
there exist extremizers for both sides and we have a recipe to explicitly construct one from

the other; this is particularly useful to construct explicit extremizers in the situations of
Corollary [2.8 below.

We can consider in (2.1.23), for instance, P(z) = |z|” for v > 0. In the particular
case P = 1, identity (2.1.23)), together with (2.1.5) and (2.1.6), yields the following addi-

tional 14 sharp constants (modulo symmetries given by the orthogonal group) in this rough

environment of sign uncertainty.
Corollary 2.8 (Sharp constants). Let t(¢) € {0,1} be such that v(¢) = £ (mod2). Then

A(,l)(t(ewuz)/z((a:l ...xy)oR;8— 2£) =2, for 0<£<2 and Re O(8—2();
Ao+ ((@r...a) o R;12—-20) =v2, for 0<£<4 and ReO(12—20);
A0 rer2)2 ((ml ...xg)oR ;24— 22) =2, for 0 8 and Re O(24 —20).
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Remark. A posteriori, it is worth reflecting on the difficulties of taking a more classical and
direct path (e.g. via Poisson-like summation formulas) to approach the sharp constants in
Corollary It is also interesting to further investigate the potential connections of this
weighted setup and the sharp constants in Corollary to other optimization problems in

diophantine geometry.

Inequality is particularly useful in situations where P is singular near the origin
(e.g. radially decreasing). In such cases, one can take Q = |z|’ sgn(H)/H (for H # 0, and
zero otherwise) in and make P less singular. Of course, this comes at the expense
of lowering the dimension, and there is an intrinsic threshold on how far one can go. For
instance, let us come back to the natural power weight P(xz) = |z|7, where v > —d is a real
number. If v > 0, Theorems and [2.6] can be applied and we are in good shape. Note
that, in this case, the integral conditions defining the class A4(|x|7;d) can be reformulated
in terms of the sign of the fractional Laplacian (—A)V/ 2 of f and f, evaluated at the origin.
A related sign uncertainty principle for bandlimited functions and powers of the Laplacian
was considered by Gorbachev, Ivanov and Tikhonov in [62]. The case —d < 7 < 0 is subtler,
and we can bring Theorem into play. In fact, in this situation, we are able to prove or

disprove the sign uncertainty principle in a set of “full density” as the dimension d grows.

Corollary 2.9 (Power weights). Let s € {+1,—1} and v > —d be a real number. Let
e:N > R be defined as: e(d) =1 for d > 2 even, e(1) =£(3) = %, and e(d) = 3 ford =5
odd.

(i) Ifs=1andv ¢ (—%—e(d),—%+e(d) orifs=—-1andv¢ (—d,—% +e(d) we

have

c\/mm{d’ 2= AN (o) < /2202290 oy,

2me 2
(2.1.24)

where ¢ is a positive universal constant. Moreover, if v = 0, there exists a radial

extremizer for Ag(|x|7;d).
(i) If s=—1 and vy e ( —d, —%] then

A_i(|z|";d) = 0. (2.1.25)

The upper bound in actually holds for all v > —d and s = +1. In the proof
of this corollary we give a more explicit lower bound in the parameters d and v (that, in
particular, recovers the known bounds in the case v = 0; see the remark after Theorem .
The uniform lower bound presented in holds with constant ¢ = 0.8595...ifd = 1; or
d = 3 and v < 0; and with constant ¢ = 1 in all other cases. Numerical simulations suggest
that the sign uncertainty principle should still hold in the small uncovered neighborhood
(of size at most 3 when s = 1 and size at most % when s = —1) around the central point

—% of the negative range.
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2.2 Non-empty classes and upper bounds: proof of
Theorem 2.3

An important ingredient in this work is the following classical identity.

Lemma 2.10 (Bochner’s relation). Let H : R — R be a homogeneous, harmonic polyno-

mial of degree £, and h : [0,00) — R be a function such that

Q0
f |h(r))? r? 2 dr < o0
0

Let hg : R* = R be the radial function on R? induced by h, that is hg(x) := h(|z|). Then

FalH - hg)(€) = (=) H(€) - Fayae[harar) (€,0),
where € € RY and (£,0) e R? x R,
Proof. See [98, Chapter III, Theorem 4 and its corollary]. O

We now move to the proof of Theorem From we have
(—=1)'H(2)Q(x) = H(—2)Q(~z) = (=1)"H(2)Q(~z) (2.2.1)

for all x € R<.

2.2.1 Non-empty classes

If £ and ¢ have a different parity, we conclude from that P must be eventually
zero (since @ is assumed to be eventually non-negative). In this case, let f € L'(R%)\{0} be
a continuous and real-valued eigenfunction with f = si' f. One plainly sees that either f or
—f belongs to A¥(P;d).

If £ and v have the same parity, we proceed inspired by an example of Bourgain, Clozel

and Kahane [12]. We consider functions of the form:

a+2¢

go(x) = H() (550”'902 +ap e—wlwz) tho(x) = H(z) e ™ fo(w) = go(w)— Ao ho(x),
(2.2.2)

d+2¢

atae
g1(z) = H(z) (eal”'x2 —ay’ e_‘“””P) ; hi(z) = H(x) (61’1”|2 —b? e_b”'le) ;

fi(z) = g1(z) — Arhy(z),
(2.2.3)

with constants 1 < ag, 1 < b1 < a1, Ag and Ay arbitrary. Using Lemma we observe
that .’g\m = (_Dm(_i)fgm’ Bm = (_1)m(_i)£hma fm = (_1)m(_i)£fma for m € {07 1}' Since
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¢ and v have the same parity, when (—1)™ = s43‘** these are eigenfunctions with the desired
eigenvalue si*. Note that Pg,,, Phy, and Pf,, are eventually non-negative (and integrable
due to property (P8)). If either {4 Pgm < 0 or {4 Phy, <0, that function will belong to
the class A%(P;d). If both of these integrals are positive, we adjust the constant A,, to
make (o, Pfn, <0 and hence f,, € A%(P;d). This shows that A%(P;d) is non-empty.

2.2.2 Homogeneous case

Assume now that P verifies (P4). As discussed in §2.2.1{ in this situation we must have
¢ and t with the same parity.

Case si{tTt =1

In this case we work with the function fy in (2.2.2) and let

d+0+~ L=y
— 2 2
Ay = q +ay? .

From the homogeneity of P and H one can check that this choice of Aq yields SRd Pfy=0.

Note from (2.2.2) that
Pfy> PHe ™’ (e(l‘%“‘m"" - Ao)

for 2 # 0 (recall that PH = H?(Q being homogeneous and eventually non-negative is actually

non-negative outside the origin). This plainly implies that

ag 10g AO

Let p := max{d—i—ﬁ—i—'y,ﬁ—'y})%,andlet ap = 1 + a, with 0 < o < v/2 to be chosen.

Using that 1 < Ag < 2a8/ % and that
ag 1

ao log ag
(ap —1)

we find

r(Pfo) < \/ “0((P/i)(200giml)+ log2) _ \/2/;(1 +0(a)) + 0 (i) (2.2.4)

We now choose a = %. Then ([2.2.4) reads

r(Pfo) < 4 /% +0(\/p) = \/§+ o(1),
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Case i = —1 and —d <y < —4

In this situation we consider the function g; in (2.2.3)). Using the homogeneity we note
that

- P@)gi(a) do = < P(z) H(z) e~mP dm> <af+5ﬂ ot ) <0

for a; > 1. From (2.2.3) we plainly see that

R4

(d + 2¢) log a;
T(Pgl) < m — 0

ai

as a; — 00. Hence, in this case, A¥(P;d) = 0.

Case si‘** = —1 and -4 < v

We now consider f; in ([2.2.3]) with the choice

d+2+y L=y
2 2
4, =4 4
1 d+0+y L=y
2 _ 2
b, b,

Observe that SRd Pfi =0. Weconsider a; =1+ 2cand by =1+ a with 0 < a < v/2 to be

chosen. Using the expansion

al loga1 1
S - 40

we note that the inequality

d+2¢ 1 7L7T‘:B|2

T e—a17r|x\2 <-—e @ (2.2.5)

holds for all |z| > r;, where

" = \/<d ;%) (; + O(a)> +0 <;> (2.2.6)

Assuming that (2.2.5)) holds, we have that

_1 1 (L_1
Pfi>PHe il <2 Lo apmel _ A1> (z #0).

This tells us that r(Pf;) < max{ry,rs}, with 71 as in (2.2.6) and

log 2A1 Clel
= . 2.2.7
"2 \/ 7 (a1 —b1) ( )
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As before, let p := max{d+ ¢+, {—~} = d+ ¢+~ in this case. Observe that we can write
A as

_ (d+2y)
aq p/2 1— a, 2

Ay = b _ (d+29)
1 1 - bl 2

Since 1 < by < a1, one can verify that the function

is non-increasing for ¢ > 0, with the limit being log a;/logb; as t — 07. Hence

<A< (2 " (logar . (2.2.8)
b1 logbl

Now we plug in the upper bound (2.2.8)) in (2.2.7)) and use the expansions

CL1b1 (log ay — log bl) a1b1 (log(log al/ log bl)) < 1 > a1b1 ( 1 )
((Il — bl) (O[) (a1 — bl) « (a1 — bl) «

to find that
P 1
< _ — .
7“2\\/2 (1+O(a))+0< )

This is the same as (2.2.4). We have seen that the choice o = % leads to rp < 4/ 4=+ O(1).

Since (d + 2¢)/2 < p, we also have r; < /4~ + O(1). This concludes the proof of Theorem
2.3

2.2.3 An additional reduction

We briefly present a related result that may be helpful in some situations. This is

inspired in similar reductions in [12] 35].

Proposition 2.11. Let P : R? — R be a function verifying properties (P1), (P2), (P3)
and (P4). Assume that P = H.Q, where H : R? — R is a homogeneous and harmonic
polynomial of degree £ = 0, and Q : R — R is a non-negative function. Let v as in .
If i =1, or if si*** = —1 and v = ¢, we can reduce the search in [2.1.12) - [2.1.13) to
functions verifying §za Pf = 0.

Proof. Assume that f € A¥(P;d) is such that {z, Pf < 0. Note, in particular, that we

cannot have P(z) = 0 a.e. in this situation. Let us show how we can adjust the function f.
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Case 1: si!tt =1

Let () = H(z) e ™2*. By Lemmawe have @ = (—i)‘p = si*p. Then {p, Py > 0
and we may consider
P
SRd Py
One can verify that g # 0 (otherwise Pf is eventually zero and from (P3) we get a contra-
diction), g = si‘g, r(Pg) < r(Pf) and {5, Pg = 0.

9(z) = f(x)

o(z).

Case 2: si"* = —1 and v > ¢

Let ¢ > 0 be a parameter to be chosen later, and define
Yy(x) == H(x) <e‘m|x‘2 g5 e‘zt“‘xP) )

Then, by Lemma [2.10)

() = (—Z)KH(a:) (t et —27 2 (2t) T

_ (420 _ wlaf? (=0 _ (d+20) ”2)
2 2

Observe that ¥ is a Schwartz function that satisfies Py > 0 and SRd Py > 0. Using the
homogeneity, a change of variables shows that {p, PzZt = 0. Observe also that

(d+ £+ ~v)tlog2
- .

i'P(x)y(z) <0 for |z| > \/

We choose t > 0 such that

r(Pf) _\/(d+€+'y)tlog2

s

and consider

S]Rd Pf 4T
x) = f(z) — ——((x) — i x)).
9(x) = f(x) foa Py (Ye(z) = i"dhi(2))
One can verify that g # 0 (otherwise Pf is eventually zero and from (P3) we get a contra-
diction), g = si*g, r(Pg) < r(Pf) and {z, Pg = 0. O

2.3 Sufficient conditions for admissibility: proof of Theorem
2.9

For E < R%, recall that |E| denotes its Lebesgue measure, and we let £¢ = RN\ E. The

following classical result will be useful.

Lemma 2.12 (Amrein-Berthier [2]). Let E, F < R? be sets of finite measure. Then there
exists a constant C = C(E, F;d) > 0 such that for all g € L*(R%) we have

fRd l9(x)* dz < C (JE l9(2)? dz + L ()| dx) . (2.3.1)
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Remark. Later works of Nazarov [87] and Jaming [70] show that (2.3.1)) holds with
C(E,F;d) < ceBIIFI

for some ¢ = ¢(d).

2.3.1 Proof of Theorem [2.5} general case

Let f e LY(RY) with f = +i*f, and let A = Ay = {z € R? : |P(2)| < A} be of finite
Lebesgue measure. For aset E < RY, let fg := f-I, where I is the characteristic function

of E. By the triangle inequality and the Cauchy-Schwarz inequality we have

L < AP Fally + [ £ac

£l < | fal, + | fae (2.3.2)

1

In the terminology of Lemma let E=F = Aandlet C = C(A, A;d) in (2.3.1)). Letting
g = fa in (2.3.1) we plainly get

F@P de<C | |fa@)] de=C (| 1f@)f de— | [fa@)] dz),
A A A A

and then (C )
AA —_— f(x 2 dz. 2.3.3

The fact that f is an eigenfunction yields f = i(—i)‘fz +(—1)" (ﬁ + ff;) and hence
fa= =0 ((Fa) 4+ (Fa) ) -
A basic triangle inequality then yields
fala < | (Fa) ), + | (Fae).a], (2.3.4)
We bound the last term in as follows:
|Fa)al, <)
From , and we get

A< facly 1412, (2.3.5)

[ fall2 < (C) | fallz + [A"2 [ facl,
which implies that
|A|1/2
fale < e Il (2:3.6)
(1 - (%57 )
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Finally, plugging (2.3.6)) into (2.3.2)) yields

A A _
i< {1 A il < (14— P,
(1—(7) ) (1_(T) )

as we wanted.

2.3.2 Homogeneous case

If P is homogeneous of degree v = 0, inequality is clear. In this case, |A,|
is either 0 or oo, and therefore (P5) implies that essinf |[P| > 0. Assume then that P is
homogeneous of degree v > 0. In this case, Ay = AY7A;, and hence |Ay| = \X¥7|A;|. Let
us write again A = Ay for some A > 0 to be properly chosen later, with the condition that

|Ax| < 1. By the Hausdorff-Young and Cauchy-Schwarz inequalities we have

[7als, < 1l < £al, 14172,

from which we obtain

J [Fa@)[ de < IAIQJ |f () da. (2.3.7)
A A

We let estimate (2.3.7)) replace (2.3.3)) in the proof of the general case in §2.3.1} If we repeat

all the other steps we get

A _ 1 1 1
Hf“l < (1 + (I—\AD> ||fACH1 = m ||fACH1 < WA HPfH1

We are now free to choose A > 0 in order to minimize the function

(t) — ;
AT A — Ay

subject to the condition |Ay| = A¥7|A;| < 1. The minimum occurs when

Q2

XAy = ,

1

+

ol
d

which gives

[

[

2.4 Sign uncertainty: proof of Theorem [2.6

Throughout this proof we let wy_; = 27%2I(d/2)~" be the surface area of the unit
sphere S¥! = R?. For 5 € R we denote 3, = max{y,0} and y_ = max{—y,0}.
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2.4.1 Lower bound

Let f € A*(P;d) and let r be arbitrary with » > r(Pf). Then

| P@ @ o= | [P@f@) do- [ [P@f@]-d < 0
R4 R4

Rd

Let B, = {x € R? : |z| < r}. By definition, [Pf]_ is supported on B, and [Pf]_ < |Pf|.
Since P is admissible with respect to an exponent 1 < ¢ < o0, by Holder’s inequality we

have

Pri= [ (PR | [P < 2| IPA < 2 IPA < 2[PIa ], Al (24)

From (2.1.16) and (2.4.1)) we get

Iflg < C(Psd;q) |Pflr < 2C(Pidsq) |Plg, |, [ flq
and we conclude that )
PI 2 T 2.4.2
P, 20(P;d; q) (242)
From ({2.4.2) we deduce that r is bounded below by a constant, since, by assumption (ii) in
the definition of admissible function, we have lim, _,¢+ HP]IB,« = 0.

2.4.2 Homogeneous case

In this case observe that |P(x)| < K|z|” and we can directly compute

, 1/q' d+vq' 1d
, <K |z|7" dz Sy g =R — (2.4.3)
a B, d+vq

if g> 1. If g =1 (and hence 7 > 0 from the admissibility hypotheses) we simply have

|Plg,

|PI,

<K, (2.4.4)

Plugging (Z4.3) - [£44) into Z4.2) yields, for ¢ > 1,

r> ( gd +74)T(d/2) >(d+m , (2.4.5)
278 (2K C(P:d )7

If ¢ = 1, the right-hand side of ([2.4.5) becomes (2 K C(P;d; 1))/,

2.4.3 Existence of extremizers

The argument to establish the existence of extremizers in certain Fourier optimization

problems generally involves showing that a suitable weak limit is a viable candidate. Ex-
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amples of such methods can be found in [22], 35, [61].

Let {fn,} < A%(P;d) be an extremizing sequence. This implies that r(Pf,) — A* :=
A¥(P;d), and we may assume that r(Pf,) is non-increasing. We normalize the sequence so
that | f,]2 = 1. From the reflexivity of L?(RY), passing to a subsequence if necessary, we
may assume that f, — f weakly, for some f € L?(R%). By Plancherel’s theorem, note that
;‘; — fand therefore f = si*f. We now prove that f is equal a.e. to our desired extremizer.

Let r1 = r(Pf;). Then ry = r(Pf,) = A* for all n € N. Since we are assuming property
(P5), Theorem tells us that holds with ¢ = 1, and hence also with ¢ = 2.
Estimate also holds for ¢ = 1 and ¢ = 2, and under conditions (P1) and (P7) we

then have

[fnlly = I fnll2 = [P fals, (2.4.6)

with implied constants only depending on d, P and r;. By Mazur’s lemma [14, Corollary
3.8 and Exercise 3.4], we can find g, a finite convex combination of {f,,, fn+1, ...} such that
gn — [ strongly in L?(R?). Passing to a subsequence, if necessary, we may also assume that
gn — f almost everywhere. Observe that g, is not identically zero (since each P fj must be
strictly positive somewhere in {z € R? : |z| > 71} due to condition (P3) which is implied
by (P5)) and hence g, € A%(P;d) with

r = 7r(Pfy) = r(Pgn) = A (2.4.7)

for all n € N. By the triangle inequality, we have ||g,2 < 1. The norm equivalences as in
(2.4.6)) continue to hold for g,. In particular, by Fatou’s lemma,

£ < liminf g1 < lguls <1 and  [Pf]y <liminf | Pg,s < lguls <1 (248)

By the Hausdorff-Young inequality, [|gnlec < [gnl1 < [|gnl2 < 1, and we may then use

dominated convergence to get

Pf = lim Pg,. (2.4.9)
By, n—=% B,
Fatou’s lemma again gives us
Pf <lim inff Pg,, (2.4.10)
n—a0 B

Bg,

2
and if we add up (2.4.9)) and (2.4.10) we get

f Pf <liminf | Pg, <0,
Rd Rd

n—o0

since g, € A*(P;d). By ([2.4.8), since f is an integrable eigenfunction, it is equal a.e. to a

continuous function, and we make this identification. Once we establish that f # 0, we will
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have that f € A*(P;d). In fact, assume that g,(z) — f(z) for all z € E, where [RA\E| = 0.
Then, if 2 € E n Bjyx, from we get P(z)f(x) = 0. Now consider z € E¢ n B}« such
that P(z) # 0. From the sign density property (P9) we can find a sequence z; — x with
zj € E n By« and P(x;)P(z) > 0. Since P(z;)f(z;) = 0, we have P(z)f(x;) = 0 and, by
the continuity of f, we arrive at P(z)f(z) = 0. The conclusion is that P(x)f(z) > 0 for all
|z| > A*. Hence r(Pf) = A* and f will be our desired extremizer.

It remains to show that f # 0. Under (P5), let A = Ay = {x e R : |P(z)| < A} be of
finite measure. From Lemma [2.12] (with E = F = Ay B,, ), the Hausdorff-Young inequality,
and we get

L= IfBs | @R de<ifle | lf@)do
< f P(z) fn(z) do (2.4.11)
Bf nAc

< P(x) fn(x) d.
Bg,

Since SRd Pf, <0 and Pf, is non-negative in Eil, estimate (2.4.11)) tells us that there is a
positive constant C' depending only on d, P and r; such that

J Pf, <-C.

Bry

The weak convergence directly implies that (note properties (P1) and (P7))
f Pf<-—C.

Br,

In particular, this shows that f # 0 and the proof is concluded.

2.5 Dimension shifts: proof of Theorem

2.5.1 Dropping the dimension

Let us first prove inequality in the generic case. We are assuming that A (P;d+
2¢) is non-empty. We first observe that the search can be further restricted to radial func-
tions. For this, let SO(d+2¢) be the group of rotations in R%+2¢ (linear orthogonal transfor-
mations of determinant 1) with its Haar measure p, normalized so that u(SO(d + 2¢)) = 1.
For f e A*(P;d + 2¢) we define

fd(z) = f f(Rz) du(R). (2.5.1)

SO(d+2¢)

One can readily check that ™4 is continuous, that f*ad, pfrad ¢ [1(RI+2) Sgasee P frad <
0, frad = sfrad and that r(Pfd) < r(Pf). To see that f™ # 0 we argue as follows. Let
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r = r(Pf). From condition (P3), there exists a certain 2o € R¥*2¢, with || > r such that
P(xo)f(zo) > 0. As P is radial, we have P(zg)f(Rxo) = 0 for all R € SO(d + 2¢), with
strict inequality if R is in a suitable neighborhood of the identity, since f is continuous.
Then P(z¢)f"®(x9) > 0. The conclusion is that in fact 2 e A*(P;d + 2¢) (and does a
job at least as good as the original f).

Now let us start with f € A¥(P;d+ 2¢) radial. Write f(z) = fo(|z|) for some continuous
fo : [0,00) — R. The conditions f, Pf € L'(R%*2*) can be rewritten as

o0 o0
L | fo(r)] rdt26-1 qr < oo and L | fo(r)] | Po(r)] P21 g < o0, (2.5.2)

Define f° : R4 - R by

F(x) = H(x) fo(|x|). (2.5.3)
Then | f°(z)| < C|z|| fo(|z|)| and (2.5.2) gives us that |z|’ f°, |z|¢|Py(|z])| f* € L*(R?). This
plainly implies that f°, Pf’ € L'(RY). The latter is obvious if Py = 0 a.e. in [0,00) and, if
not, observe that property (P1) for P implies that HQ € L'(S™!). In this second case we

also have

f P@) () do = | H@)?Q@)Po(le]) follal) do
Rd Rd

_ ( QW) da(w)> J Po(r) fo(r) r* 21 dr < 0,

0

since the quantity in parentheses is non-negative (and finite) and SRdH@ Pf <.
From Bochner’s relation (Lemma i and the fact that f = sf we have

(@) = (=) H(x) Fasoel fl(@1, 22, ..., 24,0,...,0) = s(—=i)’ f(z).

Note also that #(Pf?) < r(Pf). The fact that f” # 0 follows from the assumption that
fo # 0 and the fact that H cannot be identically zero in any open set of R% Then f’ €

A:(_l)(t(@M)/Q (15, d) and (2.1.22) plainly follows.

2.5.2 Lifting the dimension

We now work under the additional assumption (P6) for P, and consider the case @ = 1.
In case £ = 0, we have H being a non-zero constant and (2.1.23|) plainly follows. Hence,
from now on, let us assume that 1 < ¢ < d. By a change of variables given by an element

R € O(d) we may assume without loss of generality that H(z) = x1z2...x,. Hence,
P(z) = z13y... 2 Po(|z]) (v eRY).
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Let us first argue that we have property (P3) for P. In fact, if f e L'(RY) is a continuous

eigenfunction of the Fourier transform such that
P(2)f(z) = zme.. .20 Po(|z|) f(z) =0 for || >,
the continuity of f implies that
Py(|z])f(x) =0 for |z|>r.

Property (P6) holds also for  — Py(|z|) (x € R?), and we have seen that this implies (P3)
for z — Py(|z|) (z € R?). Hence f = 0, establishing (P3) for P.

Now let 5" = s(—1)(0+0/2 and assume that A% (15, d) is non-empty. Let f € A% (15, d).

We start by considering an important reduction.

Symmetrization with respect to z1,x2,..., 2
Throughout the rest of this proof let us write = (1, ...,z T) with 7 € R, Let
w(xl,xz, ey Ly, f) = f(:l:l, Ty ,xg,%) — f(—xl,xg, ey Ly, f)

Note that (g, Pw = 2 (pa Pf < 0. Observe also that w # 0, otherwise Pf would be
eventually zero and from condition (P3) we would have f = 0, a contradiction. It is clear
that r(]Bw) < r(ﬁf), and hence w € A%, (]57 d). Moreover, w is odd with respect to the
variable 1. We apply the same symmetrization procedure ¢ — 1 times, to the variables
T2,...,2¢. One then arrives at a function in A% (15, d) that is odd with respect to each of

the variables 1, ..., z, independently.

Remark. As far as radial symmetrization goes, at this point one could proceed as in ([2.5.1))
and integrate over SO(d — ¢) to symmetrize f with respect to the variable Z, but this is not

particularly necessary for our argument below.

Main argument

Let us now assume that f e A%, (13, d) has the symmetries above. Define g : R* — R by

——— if xyx0...20 # 0
g(l‘) = 1,2 ...2y 152 ¢ (2.5.4)

0, if x1z9...2p = 0.

Then f(z) = z122... 2, g(z) for all z € R, and g is even with respect to each of the variables

x1,%2,...,xy independently. Observe that Py(| - |)g is eventually non-negative and that

r(Po(l-)g) = r(Pf). (2.5.5)
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For each 1 < k < £ let y; € R® and let ¥ € R¥ ‘. We now work with the variable
y=(y1,...,y0,9) € R*2¢. Define the function g# : R¥2?¢ — R by

g#(y) = g#(yla s 7y1>§) = g(|y1|7 SRR |y€|7g) (256)

Note that Pg# is eventually non-negative with
r(Pg*) = r(Po(| - )g)- (2.5.7)

We first observe that g7 € L'(R%+2). In fact, with changes to polar coordinates in each of
the first ¢ variables on R3, we get

f ’g (y)\dy = wgf J x%...m%‘g(:cl,...,xg,ﬂ)‘d:cl...dxg dy
Ra+2¢ Rid—¢ J(R+)¢
_ng J wl...mg‘f(xl,...,a:g,ﬂ)’dxl...da:g dy (2.5.8)
Ra—¢ J(R+)*
< 0.

The last integral is finite since f is continuous, P f € L'(R?) and we have property (P6) for
P (or equivalently, for Py). Similarly, Pg* e L'(R4*2%) since

J 1P(y)| |97 ()| dy
Rd+2¢

=w§f f Ty...Ty ‘P0<(:c%+...+93%+|37|2)1/2) flxy,...,xp,9)| dzy ... dop dy
Ri—¢ J(R+)¢
y4

w ~
:2—? Rd’Pf‘ < .

(2.5.9)

By recalculating ([2.5.9) without the absolute value, and using that (. Pf <0, we find also
that {pa. 20 Pg# < 0.

Observe that, for each 1 < k < £, the functions

T 2 g(T1, . Ty, Ty, T)
2 ~
T = L g(T1, . Ty, X0, T)
2 ~\2
x>z g(T1, . Ty, Ty, T)
are absolutely integrable for a.e. (z1,...,25—1,%k+1,-.-T¢, T) € R4—1 (the second one follows

from (2.5.8)) and the latter follows from the fact that f € L?(R%)). In the computation below
let us denote z} = (21,0,0) € R3 and yi = (Y1, Yr2, ya3) € R3 for 1 < k < £. By a repeated
use of Fubini’s theorem and Bochner’s relation (Lemma with d = ¢ = 1 in that
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statement) we find
$iOxiay . xp g (@t 2f %) = §i" Oy g g(x) = SO f(2) = fla)
:J (f z19(z1,29,...,20,2) e 2Tzl dzl> 29... 2 e 2mi(@azat ATzt T D) Qo) dzy dZ
RI-1\JR

- (=)o [ ( [ dyl)
Rd—l R3

... zpe i@t tTatTE) o) dg, dE

= (_Z) z1 f (j zZ2 g(|y1|> 2y -5 2L g) e_Qwix2Z2 dZ2)
Rd+1 R

23...2 e—27rz(m1y11+m323+...+mgzg+x-z) dyl ng o ng dz

<JR3 g(|y1‘7 |y2|, 23y ...y 20, E) e 2miT2y21 dy2>

67271'1((171];11+£E32:3+...+xg2:g+$-z) dyl d23... ng 4z

= (—i)? 2129 j

Rd+1

Z3...2¢

_ (_i)é Ty, .. :wj . g(‘y1|, e ’y€|7 %) 672771‘(901yl1+x2y21+...+zey21+a~e-5) dyi ... dy, dZ

= (=i)xy .z gt (at,. .. 2, T).

Since y — ¢ (y) is radial on each of the first £ variables y; € R?, the same is valid for g/ﬁzé
and therefore, if |y1|...|ye| # 0, we find that

g1,y ) = s97 (1, ., Y0, 9)-

In particular, by the Riemann-Lebesgue lemma, ¢7 is equal a.e. to a continuous function,
that we now call g#. All the integrability properties defining the class A¥(P;d + 20) au-
tomatically transfer from ¢# to g#. We must pay a bit of attention when it comes to
. Note that by definitions and , g* is already continuous on the set

Y ={y = (y1,...,9,7) € R
values of g7 at the set Y. We claim that we continue to have

: |y1] ... |ye| # 0}. So, g# is potentially redefining the

r(Pg#) = r(Pg#). (2.5.10)

In fact, let r = r(Pg#). Taking y € R4T2¢ with |y| > 7, we want to show that P(y)g# (y) = 0.
If |y1...|ye| # 0 then P(y)g#(y) = P(y)g#(y) = 0. If |y1]...|ye| = 0, we have two options.
If P(y) = 0 we are done. If not, assume without loss of generality that P(y) > 0. In this
case, we can take a sequence of points {y(j)}jeN c Y such that ’y(j)‘ = |y| > r and y(j) -y
as j — oo. Since P is radial, then P(y(j))g?(y(j)) = P(y)gi#(y(j)) = P(y)g" (y(j)) =
P(y(j))g# (y(j)) > 0, and we conclude that g?(y(j)) > (0 and by continuity g?(y) > (. This
shows that T(Pg?) < r(Pg*). The reverse inequality is simpler, proceeding along the same

lines.
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The conclusion is that ¢g# € A*(P;d + 2¢) and from (2.5.5), ([2.5.7) and (2.5.10) we have
AL @z (Pyd) = AX(P;d + 20).

This inequality, together with (2.1.22), leads to the identity (2.1.23). This concludes the
proof.

Remark. It is interesting to notice that if we start with f € A% (]3, d) as in run
the procedure of to arrive at the function g# e A¥(P;d + 20), and then run the
radialization and dropping procedure of with this gi#, we end up with a new function
f1= (gi#)b e A%, (ﬁ, d) that does a job at least as good as the original f and has the form
fi(x) = x1 ...z fo(x), with fy radial. Such a reduction is not obvious from the start. Since
we have explicit radial extremizers for and in [35, 37, [103], one can construct
explicit extremizers for all the other 14 situations in Corollary by formula .

2.6 Power weights: proof of Corollary

Although we call this a corollary, it requires a brief proof, that will essentially be a
collage of passages from our previous results. For instance, using Theorem with H =1
and @ = |z|” we have: that A¥(|z|7;d) is non-empty for all v > —d; that the upper bound
in holds for all ¥ > —d and s = +1; and that the identity holds. From
Theorem (i) we have the existence of extremizers for A(|x|7;d) when v > 0, and the
fact that they can be taken to be radial follows as in (2.5.1]) (from Proposition we can
even assume that {z, f|z[” = 0). This leaves us with the task of proving the lower bound
in , which is the actual sign uncertainty principle. We consider below the different

regimes.

2.6.1 The case 7> 0

The case v = 0 is known (see Theorem or the remark after Theorem [2.6). Let us
assume that v > 0. Recall that the volume of the unit ball B = B; < R? is given by

|B| = 7%2/T'(4 + 1). Using [@2.1.18) and (2.1.20) we find that

1
(d+~4")

d+~q) 1 1 1
Ay(afia) > | G0 L , - L ry), ey

C P euenfem) )

where
! 'Yq/

o (drd @ d \@ [y @D
F(q) = PYF I — -
d 2(d+ ) d+
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Let us briefly indicate why the choice ¢’ = 1 indeed maximizes F(¢') for all d and + in this
case. Write v = Ad, with A > 0. Then log F'(z) = 3 H(z), with

H(z) - (1 :Aa) (log(l +Az) — 2log(2(1 + \)) + Az log (1%)) .

Routine calculus arguments lead to H'(z) < 0 for all z > 1. We then plug ¢ = 1 in (2.6.1))

to get
1
T(E+ 1)\ (1\T [ 4 @@
Adlzd) = [ =22 (= 1 : 2.6.2
(7 d) ( s ) ()" (%) (2:6:2)

This is an explicit lower bound in which the parameters d and v > 0 may vary independently.

If one is interested in bounds that are uniform on the parameter v > 0, we call x = ~v/(d+)

1 Y
1)\ v ol da(d+~)
K 2 d+~y

is minimized when x = 1/2e, with value 274 e~ 2. Then

A(la: d) = (F(g“)> " (2.6.3)

and note that the function

9 7d/2 ¢3¢

Using the inequality I'(z + 1) > (%)*v27x for all z > 0 we see that the right-hand side of
(2.6.3)) is greater than 4/% for all d = 2, and we can actually take ¢ = 1 in (2.1.24)). If
d =1 then the right-hand side of (2.6.3) is equal to cy/ 52 for ¢ = 0.8595.. ..

2.6.2 The case —% +¢(d) <7 <0

Here we use inequality (2.1.22) in Theorem (note that the dimension d here shall
correspond to the dimension d + 2¢ in (2.1.22). If d = 3, we let H(z) = x; (of degree
¢=1). If d > 4, we let H be a homogeneous and harmonic polynomial of two variables and
degree £ = —|v] (e.g. we can take H(z1,z2) = R((x1 + ix2)")). Having defined H, we let
Qz) = |z|*- w for H(z) # 0, and zero otherwise. Then (12.1.22)) yields

As(|z]7;d) = As(_l)(r(@m/z(sgn(H(x))|x|7+£; d— 2€). (2.6.4)

Note that the final dimension d — 2/ is at least equal to the number of variables we need to
construct our harmonic polynomial H (this is how we define the function € : N — R), and
on the right-hand side of we now have a homogeneous function sgn(H (z))|x|7*¢ of
degree 0 < v + ¢ < 1. Note that |sgn(H (z))| |z|"** = |2[7¢ for a.e. 2 € R¥2‘, and hence
the volume of their sub-level sets are the same. We may then proceed as in using
(2.1.18)) and (2.1.20) to arrive at the exact same bounds as in (2.6.2]) and (2.6.3]), with v+ ¢
in the place of v and d — 2/ in the place of d. This leads to ([2.1.24]) in this case.
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2.6.3 The case s=1and —d <7< —%—¢(d)

Recall that for any Schwartz function f we have the identity (see [98, Chapter V, §1,

Lemma 2])

r (T) T JRd 2|~ f(z) do =T (—%) 3 JRd 2| f(z) da. (2.6.5)

Standard approximation arguments show that (2.6.5) remains valid for f € L'(R?) such
that fe LY(R%). In particular, this implies that

Ai(fe[5d) = Ay (2~ d). (2.6.6)

Using this symmetry we fall in the case —% +¢e(d) < —d — v < 0 treated in i This
leads again to ([2.1.24)) and concludes the proof.

Remark. The symmetry (2.6.6) is not valid in the case s = —1 as we have (2.1.24]) and
(2.1.25)). In particular, in light of (2.6.5)), this implies that one cannot reduce the search in
A_1(|z|7;d), when v < —% — &(d) to functions satisfying {4 f|x|7 = 0. Proposition m

already pointed in this direction.

Remark. Establishing the sign uncertainty for P(z) = |z|7, with —d < v < 0, in a more
direct way seems to be subtle. For instance, one could try to prove , or even a
suitable weaker variation of it that would still make the Holder’s inequality argument in
(2.4.1) work. For instance, it would be natural and sufficient to consider an inequality of
the type, for f e L'(RY) with f: +f,

|fll*], < Clfll]; (2.6.7)

for some « and ¢ verifying the conditions: (i) if ¢ =1 then —d < a <~;or (i) if 1 < g < ®
then —g <a<vy+ %. However, the inequality is simply not true. The following
counterexample in dimension d = 1 was communicated to us by F. Nazarov. Choose a small
0 > 0 and consider a real-valued, radially non-increasing Schwartz function g supported on
[—6,6] with g = 1 on [—8/2,6/2]. Let hy(z) = g(z) cos(2ntx) for large t and put f; = he + hy.
Then f; = f;. Noting that lim SUP;_, o0 Hfmx\”Hl = 0, by the triangle inequality,

limsup | f;|z|"|, < limsup |h|2|7|, + lim sup Hl;t]x\le < |gl=|], < 5L (2.6.8)
t—00 t—00 t—00

Similarly, noting that lim sup,_,, ||hAt|-"E|a||Lq([ =0,

—4,9])

lig nf | fo* g 59 = i inf [elal®] o g 59 = Tim sup [kl s 5

= liminf |[hla] ] 1, 55, (2.6.9)

1
Z 50("1‘5
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If (2.6.7) were true, (2.6.8) and (2.6.9) would imply that a > v + %, a contradiction. It
should be noted that the functions in the counterexample above are eigenfunctions but do

not necessarily belong to the class A¥*(|z|";d). Hence, one may still try to find suitable

admissibility inequalities like (2.1.16)) or (2.6.7) imposing this additional constraint on f

(and even assuming that r(f) is small). Several other types of weighted norm inequalities

related to uncertainty are considered in [3].

44



Chapter 3

Integers represented by quadratic

forms

This chapter is comprised of the paper [A2]. In this chapter, we combine tools from Fourier
analysis, analytic number theory, and algebraic number theory to prove a number of new
estimates related to integers represented by positive definite quadratic forms. In particular,
we improve some results given by Zaman [109, Proposition 7.1 and Theorem 1.4], concerning
these types of estimates. As an application, assuming the generalized Riemann hypothesis,
we establish a Cramér-type result, extending the method developed by Carneiro, Milinovich,

and Soundararajan [22].

3.1 Introduction

3.1.1 Background

A classical problem in number theory is to understand the distribution of primes repre-
sented by positive definite quadratic forms. The survey [39] by D. A. Cox is the classical
reference on the subject, describing some of the historical milestones of its study and showing

how it leads to class field theory.

An integral quadratic form in two variables is a function defined by
f(u,v) = au? + buv + cv?,

where a,b, c € Z. Its discriminant —D is given by —D = b?> — 4ac. For simplicity, we refer
to a form (or quadratic form) as a function f defined in this way. We say that f is positive
definite if D > 0, and f is primitive if its coefficients a, b, and c are relatively prime. In the
set of primitive forms, we define an equivalence relation in the following way: f and g are

properly equivalent if there are integers p, g, 7, s such that
flu,v) = g(pu+ qu,ru + sv), and ps—qr = 1.
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Note that two properly equivalent forms have the same discriminant. A primitive positive
definite form f is reduced if |b| < a < ¢ and if, in addition, when |b] = a or a = ¢, then
b > 0. Classical theorems in the theory of quadratic forms (see [39, Theorem 2.8 and
Theorem 2.13]) establish that every primitive positive definite form is properly equivalent
to a unique reduced form. Moreover, for each D > 0, the number of classes of primitive
positive definite forms of discriminant —D is finite, and it is equal to the number of reduced
forms of discriminant —D. This number is called the class number and it is denoted by
h(—=D).

3.1.2 Congruence sums

An integer n is represented by the quadratic form f if there is (u,v) € Z? such that

n = f(u,v). For n = 0 an integer, define

r(n) = #{(u,v) € 2% : f(u,v) = n},

that is, the number of representations of n by f. Motivated by applications using sieve

theory, we are interested in estimating the congruence sums

> rs(n), (3.1.1)

n<z
fIn
where > 1 is a real number and ¢ > 1 is an integer. In the case £ = 1 and f(u,v) = u®+0v?,
the congruence sum corresponds to the classical Gauss circle problemﬂ Here, Gauss
used a lattice point counting argument to prove that has the asymptotic formula
mx+0(z'/?). Later, Sierpiniski improved the error term to O(z/3) using ideas from Voronoi’s
work on the Dirichlet divisor problem. Afterward, Landau [75, Treatise I] extended this
asymptotic formula to positive definite quadratic forms (still in the case ¢ = 1), with error
term O(z'/3), but without making explicit the dependence on f in this error term. For the

case where £ > 1 1is a squarefreeﬂ integer, we prove the following result.

Theorem 3.1. Let f(u,v) = au® + buv + cv? be a reduced positive definite quadratic form

of discriminant —D and let £ > 1 be a squarefree integer. Then, for x = D? we have

5/2 13/4
T(£) ¢ 1/3 7(€) £°D a:l/4>, (3.1.2)

2
> rf(n):@g(z)m+o<D1/6x + =

1<n<zx
Ln

where g is the multiplicative function defined by

9(p) = ;(1 +x(p) - X;p))

'For a survey of this problem, see [66] Section 2.7] and [4].
2 As we shall see in (3.3.7)), our result also holds for an arbitrary integer £ > 1, with an adequate function
g(¢) and perhaps a modification in the error term.
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for all primes p, x = x—p = (i) s the corresponding Kronecker symbol, and T is the

divisor function.

Theorem improves a result of Zaman [I09, Proposition 7.1|, whose error term is of

2

magnitude z'/2. Note that, when ¢ = 1, we recover Landau’s result, with an explicit

dependence on f in the error term.

As we shall see in the next section, a direct application of Selberg’s sieve allows us to use
Theorem to obtain upper bounds for the number of primes represented by f, in short

intervals.

3.1.3 Brun-Titchmarsh-type result

Assume that f is a primitive positive definite quadratic form. For x > 1, let 7¢(z) be

the number of primes represented by f up to z, i.e.,
mr(x) = #{p <x:p= f(u,v) for some (u,v) € Z?}.

The classical result for 7;(x) goes back to de la Vallée Poussin (see, for instance [86]), and

establishes that, as + — 0,

ofx
(@) ~ h(—D)logz’

where

if f(u,v) is properly equivalent to f(u, —v);

1
5f = 2’ (3.1.3)
1

otherwise.

Assuming the generalized Riemann hypothesis (GRH), we also have (see [74])

r(x) = i{(L_lg)) + O(ml/2 log(Dx)), (3.1.4)

for x > 2, where

1
Li(z) = — dt.
i) L logt

Recently, Thorner and Zaman [100, Corollary 1.3] established a Brun-Titchmarsh result,

improving upon the Chebotarev version given by Lagarias-Montgomery-Odlyzko [73]. Un-
conditionally, they showed that, for D sufficiently large,

26 Li(z)

Wf(x) < W, forl' = D700. (315)
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We want to establish a result similar to (3.1.5|) for primes in short intervalsﬂ For instance,
if we assume GRH, from (3.1.4)) we get that

5fy
mp(r) —mp(r —y) h(T)logy’

for (Dx)'/?*¢ < y < . Unconditionally, Zaman used his asymptotic formula for the con-
gruence sum (3.1.1) and Selberg’s sieve to establish a similar Brun-Titchmarsh-type result

in short intervals [I09, Theorem 1.4], with the same order of magnitude.

Theorem 3.2 (Zaman [109]). Let f(u,v) = au? + buv + cv? be a reduced positive definite
quadratic form of discriminant —D, and let € > 0 be arbitrary. Suppose that

D2 1/2+¢
(a) e <y < (3.1.6)
Then,
2 ory log log y
mo@) = msle —y) < (1—0) h(=D)logy (1 i Oa( logy ) )’
where

o log = (3 5>logD loga

- 2logy 1+Z logy 2logy’

Using Theorem [3.1], we are able to establish an analogous result to Theorem [3.2] for a range
beyond (3.1.6).

Theorem 3.3. Let f(u,v) = au® + buv + cv? be a Teducedlﬂ positive definite quadratic form

of discriminant —D. Then, the following statements hold.
1. Let 0 < e < 1/20 be arbitrary, and suppose that

D2
— 2B <y < at. (3.1.7)
a

Then,

4 ory loglogy
_ _ ) 1 599
A sy 7y R T} 10gy< " OE( logy /) )’

_ logx 4 . logD loga
~ 3logy logy logy

3
3Montgomery and Vaughan [82, Theorem 2] gave a classical version for primes in arithmetic progressions,
in short intervals.
4The hypothesis of being reduced can be removed, and Theorem holds for any primitive positive
definite quadratic form, by considering a = 1 in the range and in the values of #; and 02. A similar
situation occurs in Theorem (see Remark (ii) in [109, Theorem 1.4]).

where

1
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2. Suppose that
2P <y<2®® and x> D'. (3.1.8)

Then,

7 Sry log log y
my(x) = mp(x y)<(1—92) h(_D)logy<1+O( logy 7

log x 3llogD Tloga

where

02

:4logy 12logy  4logy’

Theorem states a Brun-Titchmarsh-type inequality in short intervals, for z/3%¢ < y <

23/5 extending the range (3.1.6) in Theorem [3.2l This also improves the constant in the

3/5

range z'/2+¢ < y < 2%/, since we have that

7 2 2

< < -.
1-6, 1-0 ¢

The associated constants in our results can be estimated, uniformly, by

4 1 2
<—6, and 12<i<67

16 < < —.
1-604 9¢ 1—0, 11

We highlight that, unlike in Theorem even under the assumption of GRH, the order of
magnitude of the bounds in Theorem |3.3| cannot be obtained using (3.1.4)) E|

As we shall see, the special case y = z'/2 will be useful in the following form:

Corollary 3.4. Let f(u,v) = au? +buv + cv? be a fived primitive positive definite quadratic

form of discriminant —D. Then,

288 /T

e+ V)~ (o) < gy (1 o(),

as r — Q0.

3.1.4 Cramér-type result

Let m(z) denote be the number of primes up to z. A classical theorem of Cramér [40]

states that, assuming RH, there are constants ¢, @ > 0 such that

m(x + cy/xlogx) — m(x)
NG
5Assuming GRH for quadratic Dirichlet L-functions modulo D, Theorem can be stated with slight

changes in the power of D on the ranges, and in the definition of #; and 62. A similar situation occurs in
Theorem (see [109, Theorem 1.4]).

>«
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for all x sufficiently large. Recently, using a Fourier analysis approach, Carneiro, Milinovich
and Soundararajan [22] Theorem 1.3] established this estimate in an optimized explicit form.

They proved that, under RH, for o > 0 we have

1 — 21
inf{ ¢ > 0; liminf m(@ + eylogr) = m(x) >ap < — (14 2a).

T—00 VT 25
This was slighlty improved by Chirre, Pereira and de Laat [33], replacing 21/25 = 0.84
by 0.8358. Furthermore, they obtained an analogous result for primes in arithmetic pro-
gressions. Our next result extends these techniques for primes represented by quadratic

forms.

Theorem 3.5. Let f be a primitive positive definite quadratic form of discriminant —D.

Assume the generalized Riemann hypothesis for Hecke L-functions. Then, for a = 0,

(67 + @) h(=D)

] _
inf{c>0; lim inf 27 (z + cy/wlogx) — my(x) :
f

im in NG > a} < 1.837

In particular, for a fixed primitive positive definite quadratic form f of discriminant —D),
there is always a prime number represented by f in the interval [z, x+1.837 h(—D)+/x log x|,
for x sufficiently large. Then, we deduce the following conditional estimate for large gaps

between primes represented by a quadratic formﬁ

Corollary 3.6. Let f be a primitive positive definite quadratic form of discriminant —D,
and let p, ; be the n-th prime represented by f. Assume the generalized Riemann hypothesis
for Hecke L-functions. Then,

limsup 22 Pl 837 h(—D). (3.1.9)
n—o +/Pn,f logpn,f

Remark. Consider the quadratic form f(u,v) = u? + mv?, where m is a positive integer. It
is known that there are at most 66 positive integers m, such that f represents a prime p if
and only if p belongs to a certain union of arithmetic progressions (see [39]). For instance,
when m = 1, a classical theorem of Fermat states that a prime p is represented by f, if and
only if p = 1(mod4). In this case, D = 4, h(—D) = 1, and we can recover the estimate
from [33, Corollary 2], with the better constant 1.7062. However, in general, the
characterization of such primes is more subtle. For instance, consider the case m = 27,
where D = 108 and h(—D) = 3. A conjecture of Euler, proven by Gauss, states that p
has the form u? + 27v? if and only if both p = 1 (mod 3), and 2 is a cubic residue (mod p).
This cannot be described by just unions of arithmetic progressions, so the results of [33] no

longer apply.

5To the best of our knowledge, there is no other explicit result of this type in the literature.
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3.1.5 Outline of the proof

There are two main themes that will be ubiquitous throughout this chapter. The first
theme is the use of Fourier analysis, in the following way. We begin by finding a summa-
tion formula that connects our object of study with an arbitrary function and its Fourier
transform. Then, we choose an appropriate test function that recovers the desired informa-
tion in an optimized manner. The second is the well-known theme that propositions about
quadratic forms can be stated in two other equivalent languages: ideals of number fields

and lattices. We now discuss the main ideas in each theorem.

Congruence sums

The first step is obtaining a summation formula associated with the coefficients ry(n),
relating it to an arbitrary test function and its Fourier transform. These types of formulas
are well-known, and are equivalent to the modularity of certain theta series associated with
a quadratic form f and a discrete periodic function y (see, for instance, [69, p. 83] and
[106, p. 32]), the latter which, in this case, allows us to filter out the congruence condition
¢|n. Since we were unable to find an explicit statement in the literature, we provide a
proof of the specific summation formula that we require. In Section we obtain the
desired expression from an application of the classical Poisson summation formula for the
lattice associated with the quadratic form f, combined with the discrete Fourier expansion
of the periodic function x. In Section [3.3] we prove Theorem [3.I] following an approach
outlined in [69, Section 4.4], which was applied to the Gauss circle problem in [69, Corollary
4.9]. By choosing an appropriate test function in our summation formula and carrying out
an asymptotic analysis (for instance, see Lemma in Appendix A), we arrive at our new
estimate for . We highlight that a good explicit dependence on ¢ and the parameters of
f is required. This imposes significant technical difficulties when compared to the argument
in [69], and requires a careful analysis and delicate manipulations with a reduced quadratic

form.

Remark. Higher moments of r¢(n) have also been studied by Blomer and Granville [§].
Later, Xu [104] gave some improvements in their error terms. Additionally, he proved that,
when ¢ = 1 in Theorem m the optimal error term in (3.1.2)) satisfies Q(D1/4:c1/ 4), which

generalizes the classical omega result given originally by Hardy and Landau (see [66]).

Brun-Titchmarsh-type result

In Section we prove Theorem [3.3] following Zaman’s general outline in [I09]. Here
the main strategy is an application of Selberg’s sieve [44 Theorem 7.1], which transforms
the problem of obtaining an upper bound for primes represented by f in short intervals,
into the problem of estimating the associated congruence sums . We remark that our
extended range in Theorem comes from the improved error term in our estimate of the
congruence Sums , of the form Of7g($1/ 3), given in Theorem When z is large

o1



compared to ¢, this improves the estimate Oy ¢(2/2) given in [I09, Proposition 7.1], and it

allows us to take intervals around z of size as small as roughly /3.

Cramér-type result

We follow the argument of Carneiro, Milinovich, and Soundararajan in [22, Section 5],
to prove Theorem Here, we work with the language of ideals in imaginary quadratic
fields. This allows us to use the machinery of Hecke characters and Hecke L-functions to
obtain information about prime ideals in a given ideal class, and therefore, about prime
numbers represented by a given quadratic form f. We first give some necessary background
on Hecke L-functions, and their relation to quadratic forms, in Section [3.5. The main
ingredients in Theorem are our version of the Brun-Titchmarsh inequality in Corollary
and the Guinand-Weil explicit formula for L-functions (see, for instance, [69, Theorem
5.12] and [21, Lemma 5]). Then, we establish a version for Hecke L-functions that averages
over all Hecke characters in a given congruence class group. We finish the proof of Theorem
in Section Following [22], we start with an arbitrary function F' in our version
of the Guinand-Weil formula. The strategy then consists of taking a suitable dilation and
modulation of F', so that we emphasize, in our explicit formula, intervals containing few
prime numbers represented by f. We must then carry out an asymptotic analysis, and
choose an appropriate function F' at the end, to conclude the desired result. In Section
we discuss some qualitative aspects of the problem of choosing an optimal function F,

related to the uncertainty principle.

3.1.6 Remarks

Throughout this chapter, let f(u,v) = au® 4+ buv + cv? be a positive definite quadratic
form of discriminant —D, and without loss of generality assume that a, ¢ = 1. In the case
when f is reduced, since |b| < a < ¢, we have that a « v/D and D > 3. We will use
these frequently. Moreover, we have that r7¢(0) = 1, and a is the smallest positive integer

represented by f.

3.2 Summation formula for r(n)

Let f(u,v) = au® + buv + cv? be a positive definite quadratic form of discriminant —D.
We recall that, for n > 0,

rr(n) = #{(u,v) € Z*: f(u,v) =n}.
Lemma 3.7. Let G € LY(R?) be a radial continuous function. Suppose that

A 1
|G(z)] « (B and |G(§)] « NGO (3.2.1)
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for some 6 > 0. Then, for an integer £ = 1, we have

i ry(n) G(vn 2?% i ry(n <\/§>

n=0

g(o)
+O( VD oot 2

(r,8)eZ2\(0,0) (#-0)€7

& (\/4f(u—rg,v—s/€)>‘>’

(3.2.2)

where

gl) = E%#{(u,v) €eZ?:0<u,v </ and 0] f(u,v)}. (3.2.3)

Proof. We start associating a lattice A = R?, defined by the basis {w1, w2}, to the quadratic

form f in such a way that a = |w1|?, b = 2wy - wy and ¢ = |ws|?. This implies that
luwr +vwsl? = f(u,v), and ry(n) = #{we A: |w* =n}, forn > 0. (3.2.4)
Let us consider the abelian groupﬂ (A/CA, +) of order £2, and let x : A/f/A — C be the

function defined by
_ 1, if 4] |w|?;
w =
xX®) { 0 otherwise.

Then, since G satisfies (3.2.1)), we have

Y Gw) = ) x@G(w). (3.2.5)

weA weA

£]lwl?
On the other hand, we consider the dual lattice A* = {w* € R? : w-w* € Z, for allw € A}.
It has a basis {w}, w3}, given by wf = 4cwy/D —2bwy/D and wj = 2bw,/D —4aws/D. This
implies that

luwf +vwi|? = 4f(v,u)/D, and rp(n) = #{w* € A* : |w*|* = 4n/D}, forn = 0. (3.2.6)

For each A\* in the set P = {sw} + rwj : 0 < s,7 < £ and s,r € Z}, we define a character
ex+ in the group (A/CA,+) by exs(w) = €™« /¢ Since the cardinality of P is £2, we
conclude that {ey«} #cp are all the characters in the group (A/¢A, +) (see [99, Theorem 2.5
in Chapter 7]). Now, we define the Fourier coefficient of x with respect to eyx, by

> 1 —\ ,—2miw -
Rlew) = 5 D5 x(@eme X
weA/LA

"We recall that the set A/£A is defined by the equivalence classes in A given by @ = {w + €\ : A e A}.
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Then, the Fourier inversion formula (see [99, Theorem 2.7 in Chapter 7)) yields

X(@) = Y] Rlexs) 2™ A (3.2.7)
A¥eP

Combining (3.2.5)), (3.2.7) and Fubini’s theorem, we get
3 G = Y %m(Z Glw) emw*/f)
;\JIG/\% A*eP weA

Recalling that vol(A*) = 4/4/D, we use the Poisson summation formula for lattices in the
above inner sum (since G satisfies (3.2.1])) to find that

> Gw) :\/g D Rleas) D] C:’(w—/\g) (3.2.8)

weA A*eP wkeA*
£ |wl?

On the other hand, if we define
~ 1 _ 9
git) = ﬁ#{WEA/&h“ wl*},

it is clear that Y (epx) = g(¢) and |X(ex+)| < g(£). Therefore, isolating the point A* = 0 in
(3:2.8) gives us

2g(¢) ~ 2 N ~ A*
Z G(w) = —=- Z Gw*) + — Z X(exs) Z G(w* - >
ZHe[|\2 \/E wreA* D A*eP\{0%} wreA* ¢
25(0) & ~ ( 4n>
A4 Gr]=
5 T;OW(”) D

3(0) 2
+ O gi/% Oglax , Z
<r, s<
(1,5)eZ2\(0,0) (wv)€Z?

& (\/4f(urg,vs/€)>‘ ’

where we have used (3.2.6) and the fact that G is radial. We conclude the proof using
(3.2.4)). O

The following technical lemma will help us estimate the error term. We compare a small

translation of f with the untranslated value, outside of a finite number of exceptions.

Lemma 3.8. Suppose that f is reduced. Let £,r, s be integers such that £ =1 and 0 < r,s <
£. Then,

#{(u,v) ez f (u_ Z’”‘Z) _ f(z;,v)} . \25'
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Proof. Define the set

A= {(u,v)eZQ:f<u—2Z,v—2;> <60}.

First we show that

{(u,v)eZQ:f(u—;,v—z> <f(7“;’v)}c,4. (3.2.9)

Indeed, if (u,v) € A¢, using that f is reduced, we have

Qfg’s) <66<f(u—2;,v—2;>. (3.2.10)
Applying the identity
flu—z,v—y) = f(u,v) + f(z,y) — 2aux — buy — bxv — 2cvy (3.2.11)
in yields
2fé72”, s) < Flu,v) + 4f§72”, s)  4aur + 2bus —é— 2bvr + 4cvs.

Then,
f(r,s)  2aur + bus + bur + 2cvs _ f(u,v)

2 l ST
Using this inequality and identity (3.2.11f), we see that

f(u r s) — fluw) + f(r,s)  2aur +bus + bur + 2cvs - f(u,v).

VAR Iz i )

This shows (3.2.9), and it now suffices to obtain an upper bound for the cardinality of A.
Observe that

HA = #{(u,v) € Z? : f(ul — 2r,vl — 2s) < 6¢L%}
< #{(u,v) € Z* : flu,v) < 6¢l?, u=—2r (mod¥), v = —2s (mod ¢)}.

We now proceed with the well-known argument in [8, Lemma 3.1] as follows. Rewriting
f(u,v), we must bound the number of integer solutions to the inequality (2au+bv)?+ Dv? <

24acl?. A solution (u,v) must satisfy that |v| « £ (where we used that ac « D), and that

—v/24acl? — Dv? — b Y 24act? — Dv? — bv

2a S 2a

Therefore, v belongs to an interval of size at most « £, and u belongs to an interval of size
at most « v/ D /{/a (once again using that ac « D). Hence, the number of solutions (u,v)

with the desired congruences modulo £ is at most « \/5/@. OJ
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3.3 Proof of Theorem [3.1]

In [109 Proposition 7.1], Zaman used a lattice point counting argument, via geometry of
numbers methods, to estimate (3.1.1). He established the following: for a primitive positive

definite quadratic form f of discriminant —D, and a squarefree integer ¢ > 1, we have

1/2 1/2 pl/4
Zrﬂ@zQﬂgWx+O<mwafm+ﬂ@mw€ b f“+g, (3.3.1)

”Zf’” VD D1/2 a3/4
n

for x > 1. Here, g is a multiplicative function satisfying

9(p) = ;(1 +x(p) — X?) (3.3.2)

for all primes p, x = x_p is the corresponding Kronecker symbol, and 73 is the 3-divisor
function. The main goal here is to improve the error term in (3.3.1)), reducing z'/? to z/3.

3.3.1 Proof of Theorem [3.1]

We partially follow the approach outlined in [69, Corollary 4.9]. Assume that = > 1 is

a real number and ¢ > 1 is an integer. Let 1 < y < 2'/2 be a parameter to be chosen. We

will apply Lemma to the radial function G : R? — R supported in 0 < r < (z + y)1/2,
and defined by

Gz y(r) = G(r) := min {7‘2, 1, rry-nr Z_ r? }

By Lemma the function G satisfies the conditions , with the bounds

L1/4 L3/

@ﬁﬂmmmmﬂamm{|Ewmm (3.3.3)

Now, let us analyze the right-hand side of (3.2.2)). We recall that r;(0) = 1, and by Lemma
we know that @(0) = mx + O(y). Letting z = Dx/y? (note that 4z/D > 1), and using

the estimates in (3.3.3)) we obtain
N 4n ~ 4n
Z W(n)G(qlD) +er(n)G( D>‘

Srwe(y5) -

n=1 asn<z n>z
« D3/4$1/4 2 T‘f(n) n D5/4g;3/4 rf (n) .
asn<z n3/4 Y n>z n5/4

To estimate the sums above, we use integration by parts and the well-known result (see [8,

Lemma 3.1])
2w T
i) = 22 w0 (\)2).
a<;$z \/5 a
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for x = a. Therefore,

© \/R D344 pl/2,1/2

ZZ: ( D) g i

We now estimate the translated terms in (3.2.2)). Let 7, s be integers such that 0 < r, s </
and (r,s) # (0,0). Let

B:= {(u,v) e 72 f<u—2,v— Z) < f“;’”)} U {(0,0)}

be the set in the statement of Lemma (with the point (0,0) included). First, let us
bound the sum over (u,v) € B. We will use the fact that f(u —r/¢,v — S/E) a/l? for all
(u,v) € Z?, and Lemma Then, recalling that a « D2 and using , we see that

PN 4f(u—r/l,v— s/l
ZG(W( L />)

(u,v)eB
We analyze the sum over (u,v) € B€, by splitting it once more into the sets B¢ n { f(u,v) < z}
and B¢ n {f(u,v) > z}. We estimate it using (3.3.3)) as follows:

~ 4f(u—r/l,v— s/l
3 G(\/f( /e />>

(u,v)eBe
D3/4,.1/4 D5/4,3/4

« 2 " Z
_ — /734 — e
(u, v)eBen{f(u,v)<z} flu=r/tv=s/t) (u,v)eBen{f(u,0)>z} y flu—r/tv—s/l)
5/4,.3/4
« D3/4p1/4 2 1 - Dy ﬁ
(u, v)eBeN{f(u,v)<z} flw,) Y {f(u,v)>2} Flu,v)

« D3/4p1/4 Z rf(n) n D5/43/4 rf(n) D34 14 pl/2,1/2

L +
3/4 5/4 3/4 1/2
as<n<z TL/ Yy n>z n/ CL/ y/

<(#B) i

FUAD3/A 3/2 D5/4,.1/4
flu—r/tv—s/l)34 a’/4

Therefore, since G(0) = 0, we combine all the terms in ([3.2.2) to find, for 1 <y < z'/2,

0 or N 67/2D3/4l‘1/4 625(31/2 y
Z zy(Vn) = @9(£)$+0<9(€)( o7/ + y1/2 JrDl/z) ©(3.34)

where §(€) was defined in . Since G 4(r) = 0, we truncate the sum on the left-hand
side of (| over 1 <n <z Usmg the definition of GG, this implies that

I 012D3/A 14 p2,.1/2 y
i) < “= G0z + 0 (5(5) ( + 4 ) . (3.3.5)
1<nZ:<:E D a7/A yi/2 D12
Ln
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To obtain the inverse inequality, we replace = by 2 —y (in this case 1 < y < (z — 3)¥?) in
(3.3.4) and use the fact that

1<n<z l<n<z
Ln Ln

Z ry(n) Go—yy(Vn) = Z rp(n) Go—yy(vn) < Z ry(n).
n=1
Ln

This yields

o 57/2D3/4($ _ y)1/4 fQ(x _ y)l/Q y
rr(n) = §(€)x+0<§(€)< + + > )
1@21@ VD a7/4 y1/2 D1/2 (3.3.6)
lln

Then, choosing y = DY3z1/3/2Y/2 in ([3.3.5)) and (3.3.6)), we Conclud that, for z > D?

~ 2,.1/3 7/273/4..1/4
2 Tf(n)=%§(£)x+0<g(€)€/§ IOk 71/1 x )
1<n<z \/E D a

Ln

(3.3.7)

Now, if we compare the main terms in (3.3.1]) and (3.3.7), we plainly see that g(¢) = g(¢) for
any ¢ squarefree integer. Also note that, for each prime p, (3.3.2) implies that |g(p)| < 2/p.

Since g is a multiplicative function, for a squarefree integer ¢ = py ... pg, we have

N 2k T(£)
(O] = 19(O] = lg(p1- - - pr)| < =
p1-..DPk
Inserting this estimate in the error term of (3.3.7)), we conclude. O

Remark. We highlight that the asymptotic formula (3.1.2)) in Theorem [3.1/holds for z > D?2.

We can establish a similar result for « > 3, if we choose y = z!/3 / 21/2 in the previous proof.
Then, for = > 3,

o +(0) $5/2 D3/
Z rf(n)z\/Eg(ﬁ)x—FO(T(E)Exl/g—i-( )a7/4 x1/4>.

1<n<z
£n

Also note that the above formula can be extended to any primitive positive definite quadratic

form, not necessarily reduced, by considering a = 1 in the error term.

3.4 Proof of Theorem [3.3

Let f(u,v) = au?+buv+cv? be a reduced positive definite quadratic form of discriminant
—D, and fix 0 < € < 1/20. To prove Theorem [3.3] we follow the idea developed in [109].
Let x = x—p(+) := (i) denote the corresponding Kronecker symbol, which is a quadratic

8Note that, so far, £ > 1 is not necessarily a squarefree integer. Using the estimate |§(£)| < 1, we obtain
a general version of Theorem
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Dirichlet character, and let L(s,x) be the associated L-function. We remark that, in the
ranges (3.1.7) and (3.1.8), using the fact that f is reduced, we have that z > z —y > D2

Let us define w = #{(p,q,7,s) € Z* : ps —qr = 1 and f(u,v) = f(pu + qu,ru + sv)}.
By [105, p. 63 Satz 2], we have that w = 6 when D = 3, w =4 when D = 4, and w = 2
otherwise. This implies that, if p is a prime represented by f, then it is represented with
multiplicity (5;1w, where d; is defined in . The number w is related to the class
number h(—D) through the class number formula (see [105], p. 72, Staz 5]):

wv D

h(~D) = = =L(1x). (3.4.1)

We start by dividing into cases, depending on the size of L(1,x).

3.4.1 The case L(1,x) = (logy) 2

Let z > 2 be a parameter to be chosen later, and define P =[] __p. Then, one can see

Pz
that
w w
5 (mp(@) —mp(e —y) < D orp(n) + 52, (3.4.2)
f T—Yy<n<wc f
(n,P)=1

Let us bound the sieved sum on the right-hand side of (3.4.2). For a squarefree integer

¢ =1, Theorem [3.1] gives us

2my
re(n) = —=g(l) + £y, (3.4.3)
$—y§1<m \/5
Ln

where

T(6) ¢ /3 4 7(€) E5/2D3/4x1/4'

|Ey| « i " ez

(3.4.4)

Then, (3.4.3) and a direct application of Selberg’s upper bound sieve (see [44, Theorem 7.1
and Eq. (7.32)] with level of distribution 22 give us

2ry 4
rin) < —=J " + 73(0)| Eyl, (3.4.5)
z—yZ;’LSLB \/E (Z]:D
(n,P):l <2z

where J = 3},_, 4p h({), and h is a multiplicative function defined by



To bound the main term in (3.4.5), we treat g as a completely multiplicative function, to
obtain (see [109, Eq. (8.8)])

J =) g(0). (3.4.6)

To bound the sum on the right-hand side of (3.4.5)), we use (3.4.4]), and integration by parts
with the estimate (see [79, Theorem 1])

Z m3(n)7(n) < z(log z)°.
n<x
It follows that
21/3 D3/4g1/4
2 T3(0)| Ee| « Dij6 Z T3(0)7(€) £ + A Z 3()7(€) (o
(P <22 <22
£<z?
2324 (log 2)5  D34z1427(log 2)°
& D6 + I . (3.4.7)

We now combine (3.4.2)), (3.4.5)), (3.4.6)), (3.4.7]), the prime number theorem, and the fact
that = > D?. We obtain

w 21y 2324 (log 2)® D342 (log 2)°
@(ﬂ'f(w) _Wf(x_y)) < m O( D6 + o/ . (348)
l<z

To analyze the main term in the right-hand side of (3.4.8]), we use some bounds given in [109].
Combining Lemma 4.3, Lemma 4.4 and Lemma 8.2 of [109], for any fixed 0 < & < 1/20, it
follows that

Z g(0) = L(1,x)log z — <é + E)L(l,x) log D + O(L(1,x) + z*EQ/Z), (3.4.9)
l<z

for any z > 1 such that z » DY4te,

The first range (3.1.7)

We recall that, in the range

D2
a

213 <y < 220,

we have z > D'®/a® > D3 since f is reduced. Now, we choose

B a1/4y1/4(10g y)—2 s
z= D5/24,1/12 :
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Note that log z ~ logy. Then, from (3.4.8)) we see that

W) — e —y)) < Y o Y
5, (mr(@) = s y”<¢DZg@+O(ﬂm%wQ'

l<z

Using the class number formula (3.4.1)) and the well-known estimate L(1, x) < log D « logy,

we get

() — (o — %Y Oy
(@) —mp(z —y) < TETRE N - O(h(—D)(logy)2>' (3.4.10)

<z

On the other hand, since z > 1 and z » DV4*+¢/4 from ([B.4.9) it follows that

(L(Lx) ™" D 9(0) > logz — <; + Z) log D + O(1 + (logy)?=~=/32)

l<z

1 1 1 1
> Zlogy— Elog:c — <3 + i) log D + Zloga—i— O(loglogy)

1—9
= ! logy + O(loglogy),

where 0 is defined as

1 =

log = 4 logD loga
= 8 J—
3logy

3 logy logy’

One can see that 9¢/4 < 1 —6; < 1/4. Therefore,

(L(I,X))ll > g(0) Sa- 0?) log y (1 i <loﬁ>§§y>)

<z

Inserting this in (3.4.10)), we obtain the desired result.

The second range (|3.1.8))

We recall that, in the range
a0 <y < 25,

we are assuming that 2 > D'®. Now, we choose

B a1/4 y1/7(10g y)—2 o
z= D5/24,1/28 :
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Note that z = 1, z » DV4t1/28 and logz ~ logy. We proceed as in the previous case to

obtain (3.4.10). Using (3.4.9)), it follows that

1 1 31 1
(L(1,x))~* Z g(0) = - logy — 2—810gx - QlogD + Zloga + O(loglogy)

l<z

1-46
=— 2 logy + O(loglog y),

where 65 is defined by

0 log x 3llogD Tloga
2

- 4logy  121logy 4logy
Then, 11/96 < 1 — 6y < 7/12, and we obtain

(L(l,x))il > g(0) Sa- GZ) logy (1 " <b§>1g0§y>>

l<z

Inserting this in (3.4.10]), we obtain the desired result.

3.4.2 The case L(1,x) < (logy)~2

Applying Theorem with ¢ = 1, we have that

w 2y s1/3 p3/agl/a
E(Wf(w)—ﬂf(x—y)) < Z Tf(n) = \/ﬁ +O(D1/6 + 27/

T—Y<n<x

Then, using the class number formula (3.4.1)) and the bound L(1,x) < (logy)~2, it follows
that, in both ranges,

D1/3,1/3 D5/A /A Sy
mp(x) —mplx—y) < {1+O<y> —|—O< T )}h(—D) L(1,x) «

This implies our desired result in this case, and we conclude the proof of Theorem O

vy
h(=D)(logy)?’

3.5 Hecke characters and Hecke L-functions

In this section, we will review the necessary background on Hecke L-functions, and their

relation to quadratic forms, to prove Theorem

3.5.1 From quadratic forms to ideals of quadratic fields

It is well-known that there is a bijection between equivalence classes of positive definite
quadratic forms, and equivalence classes of certain ideals in imaginary quadratic fields (see
[39, Section 7] and [105] for expositions). More precisely, let f be a positive definite primitive
form of discriminant —D, and let K = Q(y/—D) be the associated imaginary quadratic field.

62



We can write
D = ¢*Dg, (3.5.1)

where ¢ is some positive integer and Dy is the absolute discriminant of K over Q. To
describe the classes of ideals that correspond to quadratic forms, we must first introduce
some notationﬂ We follow Zaman’s notation in [107] and [108].

Denote by N be the norm in K over Q, and let q be an integral ideal of K. Let I(q) be
the group of fractional ideals of K relatively prime to g, and let F; be the group of principal
ideals («) of K such that « is positive and o = 1 (mod q). Let

Cl(q) == 1(q)/ Py (3.5.2)

be the narrow ray class group of K modulo q. Additionally, let H be a subgroup of I(q)
such that
Pyc H c I(g). (3.5.3)

For such an H, we call the quotient I(q)/H a congruence class group, and we denote by
hg = |I(q)/H]| its cardinality. Note that I(q)/H < Ci(q). In our setting for quadratic
forms, we will mainly need the above with the principal ideal q = (g), where ¢ is given in
; and with Hy the group of principal ideals («) of K such that o = a(modq), for
some a € Z with ((a),q) = 1 (that is, with (a) and q coprime). Note that P, — Hy < I(q).

With this notation, we can state the equivalence between ideals and forms.

Lemma 3.9. For each equivalence class of primitive positive definite quadratic forms [f],
there is a unique A = Ay € I1(q)/Ho such that, for any integer m, m is represented by f if

and only if there is an integral ideal a € A, with Na = m. This correspondence is bijective.

Proof. This follows from Theorem 7.7 and Proposition 7.22 of [39]. See also [39] pp. 144-145]

for the slightly more general framework of congruence class groups that we use here. O

In particular, note that h(—D) = hg, = |1(q)/Ho|, where h(—D) is the number of proper

equivalence classes of primitive quadratic forms of discriminant —D.

3.5.2 Hecke characters

We define a Hecke character x (mod q) to be a character of the group Ci(q), which we
defined in . Additionally, a character y (mod H) is a character of a congruence class
group I(q)/H. Given a Hecke character x (modq), abusing notation, we can extend the
definition of x to a multiplicative function over all integral ideals of K, such that x(n) =0
when (n,q) # 1, and x(n) = 1 when n € P;. With this correspondence, the characters

X (mod H) of a congruence class group correspond exactly to the Hecke characters mod g

9This notation and some of our subsequent results in this section, could be given for arbitrary algebraic
number fields, as in [I07]. However, for simplicity, we will only state the definitions and results in the case
of imaginary quadratic fields, which is the case relevant to positive definite quadratic forms.
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such that x(h) =1, for all h € H. From now on, we will work with this extended definition

of Hecke characters, as functions over all integral ideals.

We denote the trivial character mod g by xo, so that yo(n) = 1 when (n,q) = 1, and 0
otherwise. Given a character x (mod q), there is a unique f, | q, the conductor of x, such that
X is induced by a primitive character x* (modf,). This implies that x(n) = x*(n)xo(n).
See, for instance, [107] for further background on Hecke characters. For any congruence

class group, we also have the orthogonality relations (see [69) p. 44]): for all A€ I(q)/H,

hy, if A=H,
> X(A)={0H an
X (mod H) ’ ! # H.

In particular, for an integral ideal a, we have that

> XA - { S (3.5.4)

3.5.3 The family of Hecke L-functions

Here, we describe the family of Hecke L-functions in the framework of [69, Chapter 5].

Below, we adopt the notation

Ir(z) := 7 #2T (%) ,

where I' is the usual Gamma function. For a character y (mod q), we define the function
-1
x(a) ( x(p) )
L(s,x) := = 1- )
(520 = 2 iagye = LI~ Gy

where the sum and the product runs over all integral ideals a and prime ideals p of K,

respectively, and both converge absolutely to L(s,x) on {s € C; Res > 1}. When y is
primitive, it is known that L(s, x) satisfies the following conditions (see [69, p. 129] and
[107, Section 2]):

(i) There exists a sequence {\,(n)}n>1 of complex numbers (A, (1) = 1), such that the series
i Ax(n)
n=1 n’

converges absolutely to L(s,x) on {s € C; Res > 1}. In fact, the sequence {\,(n)},>1 is
defined by

(ii) For each prime number p, there exist o, (p) and a2 (p) in C, such that |a;,(p)] < 1
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and™| » B

p

The product converges absolutely on the half plane {s € C;Res > 1}.
(iii) Denote D, := Dk Nf,. The completed L-function

A(s,x) = D*T'r(s) Tr(s + 1) L(s, X)

is a meromorphic function of order 1. It has no poles other than 0 and 1, which have the
same order r(x) € {0,1}. Additionally, r(x) = 1 if x is the trivial character mod ¢, and 0

otherwise. Furthermore, the function A(s, x) satisfies the the functional equation

A(37X) = €(X)A(1 - 37Y)>

where €(x) is a complex number of absolute value 1. In particular, when q = (1) and x = o,
the function L(s, xo) is the Dedekind zeta function (x(s) of K, defined as in |69, Section

5.10]. Moreover, we have that

Poy= -y, 2

n=2

converges absolutely for Res > 1, Wherﬂ

Ay(n) = 7 x(a)Ak(a), (3.5.5)

and

logNp, if a= .pT for some integer r > 1, (3.5.6)
0, otherwise.

AK(CI) = {

Logarithmically differentiating the Euler product, it can be shown that |A,(n)| < 2A(n),

where A(n) is the usual von Mangoldt function. In particular, one can see that

> Ax(a) < 2A(n). (3.5.7)
Naa—n

Remark. If x (mod q) is a non-primitive character induced by the primitive character x*

(mod fy), we have the relation

L(s,x) = L(s,x*) [ | (1 - X*<p)> : (3.5.8)

plg

10This follows from the factorization law of primes in imaginary quadratic fields (see, for instance [69, p.
57]).
'We also extend this definition of A, to any function defined over integral ideals, in place of .
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In particular, L(s, x) also extends to a meromorphic function, such that L(s, x) and L(s, x*)

have the same set of zeros in the strip 0 < Res < 1.

3.5.4 The Guinand-Weil formula

The classical Guinand-Weil explicit formula establishes a relationship between the zeros
of an L-function, the associated coefficients A, (n) (given in this case in (3.5.5)), an arbitrary
function G, and its Fourier transform G. In the case of a Hecke L-function L(s,x), the

coefficients A, (n) contain information about prime ideals, twisted by the character x.

We will use the version of this formula in [2I Lemma 5]. However, this only applies to
the case of a primitive Hecke character mod ¢, and we will need a version that averages over
all characters, primitive and non-primitive, in a given congruence class group. The result is

the following, which could be of independent interest for further applicationsH

Lemma 3.10. Let q be an integral ideal of the imaginary quadratic field K. Let 1(q)/H be
a congruence class group as in (3.5.3), and let A € I(q)/H. Let G(s) be analytic in the strip
Ims| < & + ¢, for some e > 0. Assume that |G(s)| « (1 + [s])~1F9) for some & > 0, when

|Re s| — o0. Then

5 ze() e (3) ()

* TR 1 . TR (3,
+ G(u) Reﬁ(§+zu)+Reﬁ(§+zu) du

+0 (halog(DxNa) |Gl )
where the sum over p, runs over all zeros of L(s,x) in the strip 0 < Res < 1. The coeffi-

cients Ay (n) and Ak (a) are defined in (3.5.5)); kg(A) =1 when A = H, and 0 otherwise.

Proof. We follow the approach used in [33] Lemma 3] for Dirichlet characters modulo ¢ > 3.

The Guinand-Weil formula in [2I, Lemma 5], when specialized to L(s,x) for a primitive

12T jke the rest of this section, the previous lemma is only stated for the case of imaginary quadratic
fields, to simplify the technical details of some of the definitions. However, a similar statement holds true
for families of Hecke L-functions of arbitrary algebraic number fields, with a similar proof.
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Hecke character x (mod q), states the following:

o(274) -ofe(3) o (-5)) +13em

Px

1 Q0 /

g . Ik .
+ . G(u){ Re e (3 +iu) + Re Te (3 + iu) }du (3.5.9)

3 5l () e (429

where the sum on the left-hand side runs over the zeros of A(s, x), which coincide with

the zeros of L(s,x) in 0 < Res < 1. Now, let x be a non-primitive character mod q. Let
Xx* (mod f,) be the unique primitive character that induces x, where f, | g, so that x = x*xo,
where X is the trivial character mod q. We can then write x*(a) = x(a)+x*(a)xo(a), where

Xo(a) =1 — xo(a). Applying (3.5.9) for x*, it follows that

ot d) -rofo(3) o4} e

1 oy Tha
+7TJ G(u) Rer—(§+zu)+ReP—(§+zu) du

—o0 R R

1 &1 ~ (logn ~ (—logn
—%EQH{AX(TL)G( o >+Ax(n)G< o )}

1 &1 ~ (logn ——~ [ —logn
—%;n{Ax*m)G( 1) s Ko @ ()}

Since xo(a) = 0 when a and q are coprime, by Lemma the last sum can be bounded by

L 5 \/15 {Ax%(n)é <1°2g7r"> + Ao (M G <_1207§n>}

n=2

~ log Np
< [|Glleo Z N2

« ||| v/1og(Nq + 1).

Letting Qg := max{Nf, : x (mod H)}, note that
log Dy < log(Dk Qu) < log(Dk Nag).

By (3.5.8), L(s,x) and L(s,x™) have the same zeros in 0 < Res < 1. Then, for any
non-primitive character x (mod H), we obtain thaﬁ

zo(tr)-wfel@) e (2))

+1JOO G(u) Re%(lJriu)JrRer—R(;Jriu) du
™ J_o FR 2 FR 2

"®In fact, in this step we have the slightly better error term « (log(Dx Q) + +/log (Nq + 1)) 1G] o -
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4§ () e ()
+0 (log(Dx Na)I| o)

We now multiply by x(A) and sum over all y (mod H). Using that r(x) = 1 if x is the

trivial character, and 0 otherwise, we get that

5 xze(27) -e(5) ve 5)

X (mod H)

+ Z m% wG(u){RefR{(é—kiu)—i-RefR(g’—kiu)}du
X

1 & 1 ~(—logn —_
L §2ﬁa< o ) S XA W)
+0 (i log(DxNa) |Gl ) -

Using (3.5.5)), Fubini’s theorem, and the orthogonality relations (3.5.4]), we obtain the desired
result. O

3.6 Proof of Theorem (3.5

We follow the argument of Carneiro, Milinovich, and Soundararajan in [22, Section 5].
To begin, fix a primitive positive definite quadratic form f of discriminant —D, and let
A € I(q)/Hy be the corresponding ideal class as in Lemma Assume GRH for all Hecke
L-functions associated with characters y (mod Hp). Furthermore, take a fixed even and
bandlimited Schwartz function ' : R — R such that F(0) > 0 and supp (ﬁ’) c [-N, N],
for some N > 1. We can extend F' to an entire function, and using the Phragmén-Lindelof
principle, the hypotheses of Lemma [3.10] are satisfied. Let 0 < A < 1 and 1 < o be free

parameters, to be chosen later, such that
2rAN < logo.

We remark that we will send ¢ — o0 and A — 0. In this section, we will allow all implicit
constants to depend on the fixed quadratic form f, its discriminant, and the fixed function

F, but not on the free parameters o and A.
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3.6.1 Asymptotic analysis

The following computations are similar to those in [22] and [33], so we highlight the
differences. Consider the function G(2) := AF(Az)o%*. We apply Lemma to G, with
our specific choices of q, Hyp and A. This gives

s, e -o(3) ro(-})

X (mod Ho)
M=D)km,(A) (* g (1 R (3
+ - _OOG(u) Re T (5 +du) + ReF (3 +iu) ¢ du
h(=D) & 1~ (logn
o Z2nG<27r> ZAK(a)
n= acA
Na=n
1 & 1 ~(/—logn
5 20 () XCATAL() ¢ +0(1),
n=2 X (mod Ho)

(3.6.1)

where the inner sum on the left-hand side runs over the imaginary parts of the zeros of

L(s,x) on the line Res = % The first, second, and fourth lines in the right-hand side of

(3.6.1) can be estimated as in [22] pp. 553-554]. In this way, we obtain the following:

S @R - ar)ve - “CE S 6 (SE) 4 S i)

X (mod Hp)
+0(A%/o) +0(1).

Therefore,

sFOVEs Y Dot + G Y Lo (E) { Y Akl
+

X (mod Hop) 7x n=2
+0(A%/o) + 0(1).

To analyze the first sum on the right-hand side of (3.6.2]), we recall the formula [69, Theorem

5.8]
2

T D, T
N(T,x) = =1 B S log T + log D
(T,x) = — 0g<(2m)2> + O(log T+ log Dy),

where N(T,x) denotes the number of zeros of L(s,x) in the rectangle 0 < ¢ < 1 and
|y| < T. This holds for both primitive and non-primitive characters. Note that the term 72

comes from the fact that K is an algebraic extension of Q of degree 2. For each y (mod Hy),
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integration by parts gives us (see [22, Eq. (5.4)]) that
log(1/2wA)
2GR = == ==|[F[ls + O(1).
Tx
Then,

S Ylety)] = -0y B py o), (363

X (mod Hop) 7x

3.6.2 From ideals to primes represented by f

We now consider the second sum on the right-hand side of (3.6.2)). This sum is given by

> \/15@ <lo2g7rn> D Ag(a) =] \}ﬁﬁ <1°g2§10)> D Ag(a) . (3.6.4)
n=2 + acA n=2 + acA
Na=n Na=n

~

We first make some reductions to the sum over n. Initially, since supp (F') < [—N, N], the
sum runs over oe 22N < n < 5e2™AN | Note that the sum is supported over integers n that
are (integer) prime powers, since Ax is supported on powers of prime ideals. Furthermore,
by the relationship between ideals and forms (Lemma , the sum over n is actually
supported over prime powers that are represented by f. Using , the contribution of
the prime powers n = p*, with k > 2, is O(1). The sum is therefore reduced, up to an

72TI'AN’ e27rAN] )

error term O(1), to a sum over primes p represented by f, such that p € [oe o

Our version of the Brun-Titchmarsh theorem, Corollary will be useful to estimate the

contribution near the endpoints of this interval.

We continue by choosing the parameters A and o, and bounding the corresponding
contribution of the primes in the interval (ce=2™2, ge* 2] to the sum (3.6.4). Fix a > 0,

and assume that ¢ > 0 is a fixed constant such that

lmint ™ (z + cy/zlogw) — mp(x)
xr—00 \/,E

Then, for any € > 0, there exists a sequence of z — 0, such that there are at most (a+¢)/z

< .

primes represented by f in the interval (z,z + ¢y/zlogz]. For each x in this sequence, we
choose o and A such that

[x,a: +c a:logm] = [Ue_%A,Ue%A].
This implies that (see [22, Eq. (5.7)-(5.8)])

4T\ = ¢

log = N O(log2 T

NG ), and o=z + O(vzlogz).
T T
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Note that 6 = 1/2 (defined in (3.1.3))) if and only if A = {a : a € A}. Using the factorization

law of primes in imaginary quadratic fields [69), p. 57], we can plainly see that

]

M Axla) =logp 3 1< 2L, (3.6.5)
Of

acA acA

Na=p Na=p

Using that (F/(t))4 < |F|1 and (3.6.5), we bound the contribution in this interval by

LD Y IRTOI LD egp

pe(oe=2TA ge2mA] acA pe(ce2mA ge2mA]
Na=p
F 1 F
< ” 5}11(04 + ez ig[: _l 5f|1(oz +¢)log z.
Finally, we estimate the contribution of the primes in the intervals [ce ™2™V ge=272] and
[0e?™ ge?™AN]. We will need the following estimate: for g € C''([a,b]) we have
b
0 S(ge.P) = [ (glt))dt <50~ a) sup [ (o), (3.6.6)
a z€[a,b]

where P is a partition of [a,b] of norm at most § and S(g4, P) is the upper Riemann sum
of the function g; and the partition P. We apply (3.6.6)) with the function

o) = F <lo§7(rt£a) ) ’

and the partition P = {z9 < ... < x;} that covers the interval [oe?

U‘}]:_Ol[xj7l'j+1], with xg = 0e?™, x;41 = x; + /Tj. Defining M; = sup{g*(z) : = €

[2;,2j4+1]}, by Corollary (3.6.5), and (3.6.6) we bound the contribution in this interval
as follows{]

7TA, 0.627rAN] c

logp/o
IS5ra <N
p represented by f

J— -
gijc%xu4>@8+@¢%(<@8+@Vg@““JW@w»+@+0ﬂ>

Jz; ') h(=D)logz; = h(-D) !

1See [33, p. 7] for details in this computation.

71



We treat the other interval in a similar way. Combining the two intervals, we obtain

1~ [log(p/o)
— (F) | —=—— Ak (a)
> (DY E S

1<| =574 ‘gN B?Efp
(28 + ) /o (27A) "
< Erave LAHwaﬁ(”+Oa)

Grouping the previous estimates, we conclude that

Z 1 (@), (logn> Z Ag(a) p < H?Jl(a+s) log x

(28 + £) /7 (27A) -
+ BV ﬁAHfF®M<ﬁ+Oﬂ)

(3.6.7)

Then, inserting the estimates (3.6.3)) and (3.6.7) in (3.6.2), and reordering the terms, we

obtain

VoA <F(0) (28 +¢) f[ (F()s dt>

_171]0

< h(—l;)rHFHl [(a + g)l‘zsgfw + 210g(1/27rA)] +0(1).

Sending x — oo along the sequence, and then sending € — 0, we obtain that

(O + )h(=D) £

c< 2 ~ )
oy F(0) = 28§y (F(£))4 dt

(3.6.8)

where we assume that the denominator is positive. By the approximation argument in [22,
Section 4.1], equation (3.6.8)) also holds for any even continuous function F € L!'(R), with

the mentioned restriction on the denominator. Now we must find a suitable function F'.

3.6.3 Construction of F

Inspired by Gorbachev’s constructions in [63] for a related Fourier optimization problem
(see also the remark in [22], p. 536]), we search numerically for optimal dilations of functions

of the form

H(z) = cos(2 . . 6.
(z) = cos( mc)]; = 1) = 1622 (3.6.9)
Using a greedy algorithm, we found the function
T
Flo)=H (0.98644) ! (3.6.10)
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where

68 ) 1
H(z) = 2
(z) = cos(2mz) (1 “ 1622 T 91622 25— 16x2> ’

which, by numerical experimentE gives
F

L < 0.91833. (3.6.11)

F(O) —28 S[_l’l]c(F(t))-i- di
Therefore, inserting it in (3.6.8]) we conclude the desired result. O

3.7 Uncertainty and Fourier optimization

In this section, we discuss some qualitative aspects on the problem of choosing an optimal
function F' in (3.6.11)). For 1 < A < oo, in [22] the authors introduced the functionals

[FO)] = Afj_y e |F(0)] dt
[F[

JA(F) :=

and ~
F(0) = A, (F(1) at

|11 ’

JI(F) =

where F' is a continuous function such that F' € L}(R)\{0}. They considered the following

problems:

Extremal Problem 3.10.1. Define A to be the class of continuous functions F : R — C,
with F e LY(R)\{0}, and € = {F e A: supp F [-1,1]}. Find

sup J4(F), if 1 <A< oo
C(A) o FeA
o FO)
, A= 0.
e En Y

Extremal Problem 3.10.2. Define AT to be the class of even and continuous functions
F:R >R, with F € L'(R)\{0}, and ET = {F e At : F(t) <0 for |t| > 1}. Find

sup J1(F), if 1< A<

n FeA
C"(4) := F(0)
sup ——=, if A= oo.
ree+ | Flx

The authors show that, for all 1 < A < 00, we have 1 < C(A4) < CT(A) < 2. The proof
in Section 3.6/ and an approximation argument ([22, Section 4.1]) show that, to optimize the
value of the constant in Theorem we must find C*(28), where 28 is the constant in the
Brun-Titchmarsh-type result given in Corollary

5The bound 0.91833 in (3.6.11)) was determined rigorously, using ball arithmetic with the ARB library.
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One way to construct good functions for some Fourier optimization problems is to consider
those of the form F(z) = P(z)e~ ™", where P is a polynomial. They were constructed in
[33] via semidefinite programming. Note, however, that when A = o0, these functions do
not even belong to the family £, as they are never bandlimited. Similarly, when A — oo,
optimizing J4(F') requires an increasing concentration of the mass of F in the interval
[—1,1]. For the same reason, by the uncertainty principle, we might expect that functions
of the form P(a:)e_”2, when P has bounded degree, become inadequate as A grows, while
bandlimited functions of the form , which give the best known bounds when A = o
(see [63]), become better. This qualitative observation can be formalized in the following

way:

Proposition 3.11. Let n > 1 be an integer. Let F, be the class of functions of the form
P(:J:)e*m"z, where P € R[z] is a polynomial of degree at most n (not identically 0). Then,
there exists A, > 1, such that, for all A = A,, we have

sup Ja(F) <0.
FeFn
In particular, for large A, polynomials of bounded degree times a gaussian are always far

from the (positive) supremum.

Proof. Note that F,, u {0} is a vector space of dimension n + 1, and it is invariant under
the Fourier transform. Clearly, for any interval I < R, the function

n
i
DT
7=0

2
e ™ dx

(ao, al,...,an)HJ
1

is a continuous function from R™*! to R, and homogeneous of degree 1. Therefore, by a

compactness argument, there exists a function Fy € F,, that maximizes the quantity

1 1 -
§ 1P ()| dz S IE(t)] de
D, :=max——— =max —————.
FeFn (g |F(2)| do FeFu § |F(t)| dt

Since Fj is not bandlimited, we have 0 < D,, < 1. Additionally, note that, for F' € F,,, we

have
1

|F(0)] <f |F(t)] dt < f |F(t)| dt.
R 1—=Dn Ji—11)e

Therefore, for A > ﬁ, and F' € F,, we have J4(F) < 0, and this implies the desired

result. O

We conjecture that a similar behavior holds for the problem C*(A), as A — . For
instance, functions constructed by David de Laaﬂ via semidefinite programming (applying

the methods used in [33]), with polynomials of degree at most 122, imply the estimate

6personal communication.

74



C*(28) > 1.0865. Meanwhile, the bandlimited function defined in gives C*(28) =
1.0889.

In general, for some valueﬂ of A, Table 1 compares the lower bounds for C*(A) that are
obtained via semidefinite programming, with those obtained using bandlimited functions.
The functions constructed via semidefinite programming (following [33, Section 4], and
communicated by David de Laat) have the form P(z)e™™", where P is a polynomial of
degree at most 82 or 122 (that is, functions in Fgy or Fi2). On the other hand, the
aforementioned bandlimited functions F' are constructed as in (3.6.10)) (that is, F' € PW)E

Table 2 gives the necessary parameters to define these functions. They have the form

F(z) = H<A> (3.7.1)

where

al a9 as
H(x) = cos(27r:v)(1 162 T 9162 T 25 16:62)’ (3.7.2)

with a1, a9,as € R. This gives strong evidence for the following conjecture:

Conjecture 3.12. There exists an absolute € > 0, such that the following holds: for n > 1
an integer, there exists A} > 1, such that, for A > A}

-, we have

sup JI(F)<C"(A) —e.
FeF,

However, proving it seems more subtle, and is related to the concentration of positive mass
of a function, instead of total mass, similar to the sign uncertainty principles described in
Chapter |2l In particular, a similar conjecture for the functions P (:tf)e*”2 of bounded degree

was stated in [35, Conjecture 3.2].

"From [22], Theorem 1.2], it is known that C* (1)=2, and we include our bounds for the sake of comparison.
For the other values of A, our bounds in Table 1 slightly improve the general lower bounds obtained in [22]
Theorem 1.2 and 1.3].

8The notation PW comes from the Paley-Wiener space.
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A Fs2 F122 PW A Fs2 F122 PW
1.0 | 1.9016 | 1.9307 | 1.9602 || 18.0 | 1.0893 | 1.0944 | 1.0931
1.5 | 1.4070 | 1.4089 | 1.3430 || 18.5 | 1.0887 | 1.0938 | 1.0928
2.0 | 1.2900 | 1.2933 | 1.2417 || 19.0 | 1.0881 | 1.0933 | 1.0925
2.5 | 1.2346 | 1.2378 | 1.1972 || 19.5 | 1.0875 | 1.0928 | 1.0922
3.0 | 1.2025 | 1.2049 | 1.1719 || 20.0 | 1.0870 | 1.0923 | 1.0919
3.5 | 1.1807 | 1.1830 | 1.1555 || 20.5 | 1.0865 | 1.0918 | 1.0917
4.0 | 1.1653 | 1.1673 | 1.1439 || 21.0 | 1.0860 | 1.0914 | 1.0914
4.5 | 1.1538 | 1.1555 | 1.1355 || 21.5 | 1.0856 | 1.0909 | 1.0912
5.0 | 1.1448 | 1.1467 | 1.1290 || 22.0 | 1.0852 | 1.0905 | 1.0909
5.5 | 1.1378 | 1.1396 | 1.1239 || 22.5 | 1.0848 | 1.0901 | 1.0907
6.0 | 1.1320 | 1.1339 | 1.1198 || 23.0 | 1.0845 | 1.0897 | 1.0905
6.5 | 1.1271 | 1.1294 | 1.1164 || 23.5 | 1.0841 | 1.0893 | 1.0903
7.0 | 1.1228 | 1.1255 | 1.1136 || 24.0 | 1.0838 | 1.0890 | 1.0901
7.5 | 1.1191 | 1.1222 | 1.1112 || 24.5 | 1.0835 | 1.0886 | 1.0900
80 | 1.1159 | 1.1192 | 1.1091 || 25.0 | 1.0832 | 1.0883 | 1.0898
85 | 1.1131 | 1.1166 | 1.1073 || 25.5 | 1.0830 | 1.0880 | 1.0896
9.0 | 1.1107 | 1.1142 | 1.1058 || 26.0 | 1.0827 | 1.0876 | 1.0895
9.5 | 1.1086 | 1.1121 | 1.1044 || 26.5 | 1.0825 | 1.0873 | 1.0893
10.0 | 1.1067 | 1.1101 | 1.1031 || 27.0 | 1.0823 | 1.0871 | 1.0892
10.5 | 1.1049 | 1.1084 | 1.1020 || 27.5 | 1.0820 | 1.0868 | 1.0890
11.0 | 1.1033 | 1.1068 | 1.1010 || 28.0 | 1.0818 | 1.0865 | 1.0889
11.5 | 1.1019 | 1.1054 | 1.1001 || 28.5 | 1.0816 | 1.0863 | 1.0888
12.0 | 1.1005 | 1.1041 | 1.0993 || 29.0 | 1.0814 | 1.0860 | 1.0886
12.5 | 1.0992 | 1.1030 | 1.0985 || 29.5 | 1.0812 | 1.0858 | 1.0885
13.0 | 1.0980 | 1.1019 | 1.0978 || 30.0 | 1.0810 | 1.0856 | 1.0884
13.5 | 1.0969 | 1.1009 | 1.0972 || 30.5 | 1.0809 | 1.0854 | 1.0883
14.0 | 1.0959 | 1.1000 | 1.0966 || 31.0 | 1.0807 | 1.0852 | 1.0882
14.5 | 1.0949 | 1.0992 | 1.0960 || 31.5 | 1.0805 | 1.0850 | 1.0881
15.0 | 1.0940 | 1.0984 | 1.0955 || 32.0 | 1.0804 | 1.0848 | 1.0880
15.5 | 1.0931 | 1.0976 | 1.0951 || 32.5 | 1.0802 | 1.0847 | 1.0879
16.0 | 1.0922 | 1.0969 | 1.0946 || 33.0 | 1.0800 | 1.0845 | 1.0878
16.5 | 1.0915 | 1.0962 | 1.0942 || 33.5 | 1.0799 | 1.0844 | 1.0877
17.0 | 1.0907 | 1.0956 | 1.0938 || 34.0 | 1.0797 | 1.0842 | 1.0876
17.5 | 1.0900 | 1.0950 | 1.0935 || 34.5 | 1.0796 | 1.0841 | 1.0875

Table 3.1: Table of lower bounds for C*(A) via semidefinite programming and bandlimited
functions.
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A | CT(A) {a1,az2,as} A A | CT(A) | {a1,a9,a3} A
1.0 | 1.9602 {81, -69, 0} 0.100000 || 18.0 | 1.0931 | {297, 18, 1} | 0.977220
1.5 | 1.3430 | {189, -63, -20} | 0.660234 || 18.5 | 1.0928 | {297, 18, 1} | 0.977843
2.0 | 1.2417 | {243, -57, -20} | 0.765530 || 19.0 | 1.0925 | {270, 18, 1} | 0.978433
2.5 | 1.1972 | {216, -39, -20} | 0.819517 || 19.5 | 1.0922 | {270, 18, 1} | 0.978992
3.0 | 1.1719 | {216, -27, -20} | 0.852929 || 20.0 | 1.0919 | {270, 18, 1} | 0.979523
3.5 | 1.1555 | {216, -18, -20} | 0.875775 || 20.5 | 1.0917 | {270, 18, 2} | 0.980027
4.0 | 1.1439 | {243, -15, -20} | 0.892422 || 21.0 | 1.0914 | {270, 18, 2} | 0.980508
4.5 | 1.1355 | {270, -9, -20} | 0.905109 || 21.5 | 1.0912 | {270, 18, 2} | 0.980966
5.0 | 1.1290 | {297, -6, -20} | 0.915104 || 22.0 | 1.0909 | {270, 18, 2} | 0.981402
5.5 | 1.1239 | {324, -3, -20} | 0.923186 || 22.5 | 1.0907 | {270, 18, 2} | 0.981820
6.0 | 1.1198 | {378, 0,-20} | 0.929858 || 23.0 | 1.0905 | {270, 18, 2} | 0.982219
6.5 | 1.1164 | {405, 3,-20} | 0.935461 || 23.5 | 1.0903 | {270, 18, 2} | 0.982600
7.0 | 1.1136 | {243, 3,-10} | 0.940232 || 24.0 | 1.0901 | {270, 18, 3} | 0.982966
7.5 | 1.1112 | {297, 6,-12} | 0.944345 || 24.5 | 1.0900 | {243, 18, 2} | 0.983317
8.0 | 1.1091 {270, 6, -9} 0.947928 || 25.0 | 1.0898 | {243, 18, 3} | 0.983653
8.5 | 1.1073 {216, 6, -7} 0.951076 || 25.5 | 1.0896 | {243, 18, 3} | 0.983976
9.0 | 1.1058 {297, 9, -8} 0.953865 || 26.0 | 1.0895 | {243, 18, 3} | 0.984287
9.5 | 1.1044 {270, 9, -7} 0.956353 || 26.5 | 1.0893 | {297, 21, 4} | 0.984586
10.0 | 1.1031 {243, 9, -5} 0.958586 || 27.0 | 1.0892 | {297, 21, 4} | 0.984874
10.5 | 1.1020 | {297, 12, -6} | 0.960601 || 27.5 | 1.0890 | {297, 21, 4} | 0.985151
11.0 | 1.1010 | {270, 12, -5} | 0.962429 | 28.0 | 1.0889 | {68, 5, 1} | 0.986440
11.5 | 1.1001 | {270, 12, -4} | 0.964095 | 28.5 | 1.0888 | {297, 21, 4} | 0.985676
12.0 | 1.0993 | {243, 12,-3} | 0.965619 || 29.0 | 1.0886 | {297, 21, 4} | 0.985924
12.5 | 1.0985 | {243, 12,-3} | 0.967019 | 29.5 | 1.0885 | {297, 21, 4} | 0.986165
13.0 | 1.0978 | {297, 15, -3} | 0.968309 || 30.0 | 1.0884 | {270, 21, 4} | 0.986397
13.5 | 1.0972 | {297, 15, -2} | 0.969502 || 30.5 | 1.0883 | {270, 21, 4} | 0.986622
14.0 | 1.0966 | {270, 15, -2} | 0.970609 || 31.0 | 1.0882 | {270, 21, 4} | 0.986839
14.5 | 1.0960 | {270, 15, -1} | 0.971638 || 31.5 | 1.0881 | {270, 21, 4} | 0.987049
15.0 | 1.0955 | {270, 15, -1} | 0.972597 || 32.0 | 1.0880 | {270, 21, 4} | 0.987253
15.5 | 1.0951 | {270, 15, -1} | 0.973494 | 32.5 | 1.0879 | {270, 21 ,4} | 0.987450
16.0 | 1.0946 {243, 15, 0} 0.974334 || 33.0 | 1.0878 | {270, 21, 4} | 0.987642
16.5 | 1.0942 {243, 15, 0} 0.975122 || 33.5 | 1.0877 | {270, 21, 4} | 0.987827
17.0 | 1.0938 | {243, 15, 0} | 0.975863 || 34.0 | 1.0876 | {270, 21, 4} | 0.988007
17.5 | 1.0935 {297, 18, 0} | 0.976561 || 34.5 | 1.0875 | {270, 21, 4} | 0.988182

Table 3.2: Table of lower bounds for C*(A) via bandlimited functions, with the correspond-

ing parameters as defined in (3.7.1)) and (3.7.2)).
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Chapter 4

The Riemann zeta-function: the

antiderivatives of its argument

This chapter is comprised of the paper [A3]. Our goal, as explained in Section is to
obtain an asymptotic expression for the second moment of the antiderivatives of S(t), up

to the second-order term.

4.1 Introduction

Recall that N(t) was defined in Section and the Riemann von-Mangoldt formula

in (1.3.2)) states that

N(t) = -1 gt—t+;+5(t)+o<1>.

2 © 2r 2w

To understand the distribution of the zeros of ((s), the formula has led to studying
the oscillatory character of S(t). J. E. Littlewood [76] [77] and A. Selberg [93,04] investigated
the behavior and the power of the cancellation in S(t) using its antiderivatives S, (t). Setting
So(t) = S(t) we define, for n > 1 an integer and ¢t > 0,

t
Si(t) = fo Sy (r) dr +6n )

where 4, is a specific constant depending on n. These are given by

(_1)k71 0 00 0 o0
5214:—1 = J J J f 10g|<(0'0)| dO‘o d0'1 dO’Qk_Q
1/2 02k —2 g2 JO1

™

forn =2k —1, with k > 1, and

k—1 Lot Lol (_1)’%1
5k:(_1)_f J f J dog doq ... dogg—1 = ————+
i 1/2 Joog—1 o2 Joi 2t (2k)! - 22k

for n = 2k, with k£ > 1.
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Let us recall some estimates for S, (¢). In 1924, assuming the RH, Littlewood [70),
Theorem 11] established the bounds

S(t) = On <(bgf;§;m> (4.1.1)
for n = 0. The order of magnitude in has never been improved, and efforts have
thus been concentrated in optimizing the values of the implicit constants. The best known
versions of these results are due to Carneiro, Chandee and Milinovich [I8] for n = 0 and
n = 1, and Carneiro and Chirre [19] for n > 2 (see also [20, Theorem 2] for a refinement
in the error term). In the other direction, Selberg [93] and Littlewood [77] first studied the
largest positive and negative values of S, (¢). These have also been the subject of recent
research, with improvements for S(¢) and S;(t) in the work of Bondarenko and Seip [11].
Further refinements for S,,(t) were obtained by Chirre and Mahatab [32] (see also [29] and

[310).-

4.1.1 The second moment of S, (%)

The next step to understand the behavior of the function S, (t) is to obtain an asymptotic

formula for its moments. In this chapter we will concentrate on the second moment.

In 1925, assuming RH, Littlewood [77, Theorem 9] proved for n > 1 that
T
J 1S, (8)2 dt = O(T). (4.1.2)
0

A few years later, in 1928, Titchmarsh [I01, Theorem II] gave the first explicit version of
the above result, for n = 1, establishing that

T
C
2 ~
J;) |Sl(t)| di 272 Ta

where

o=y Am

=, m (log m)4

Here, A(m) is the von-Mangoldt function, which is defined to be logp if m = p* (for some
prime number p and integer k£ > 1), and zero otherwise. Unconditionally, in 1946 Selberg
[94, Theorems 6 and 7] established that

T
T
JO |S(t)|* dt = 3.2 loglog T+ O(T'+/loglogT), (4.1.3)
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and]]

JOT\ 1(1)]? dt—QT+O<IO§T>. (4.1.4)

Assuming RH, Selberg [93] had proved with the error term O(T). Going even further,
he computed all even moments for S(¢) and Si(t). Using these even moments for S(t),
Ghosh [51], 52] obtained the asymptotic behavior for all moments of |S(¢)|*, with A > —1.
Furthermore, Fujii [49] established, assuming RH,

T C, T
fo 1S (8)2 dt=27r2T+O< > (4.1.5)

logT

for n > 2, where C,, is defined in (4.1.6]).

Our main result in this section is an explicit version of up to the second-order
term, extending the result of Goldston for the cases n = 1. In particular, we obtain
refinements of (4.1.4) and (4.1.5)), under RH. Note that our second-order term improves the
error terms in (4.1.4)) and (4.1.5). Our main result is Theorem which we restate here

for the reader’s convenience:

Theorem 4.1. Let n = 1 be an integer. Assume the Riemann hypothesis. Then

T T © p 1 T+/loglog T
[NEXURE= = (@) qo— L]+ o IvloglosT 3
0 2m 272 (log T)*" a?nt? 2n (log T')2n+1/2

as T — o0, where

0
4.1.6
WLZ:lQm (logm) ( )

2n+2

Let us analyze the constants that appear on Theorem We highlight that C,, — o
when n — oo. In fact, the growth of these constants is exponential (see Section [4.5)), of

order
1

Cn ™ Sl 2y

Table 1 puts in perspective the constant that appears in front of the first-order term, in the
small cases 1 < n < 10. For the second-order term, by following Goldston’s argument using
[63, Lemma A], it is straightforward to obtain upper and lower bounds for the integral in

the second-order term of Theorem 4.1] . For any n > 1 we geiﬂ

2 © Flo 8
32n+3 —Es f OtQSH')Z da 9 C(Qn + 2) (417)

w

In [94], Selberg actually calculated the second moment for the function Si(t) — §;. His formula can be
used to deduce , by using the unconditional estimate for Sz (¢) given by Fujii [48, Theorem 2].

2The constants in may be slightly improved. However, this is far from the expected behavior
suggested by the strong pair correlation conjecture [81I], and it seems difficult to obtain anything qualitatively
closer.
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’n\ Cp/2m* \ n \ Cp/2m* ‘
11 0.079290... | 6 | 2.064933...
2 | 0.124743... | 7 | 4.290884...
3 10.239241... | 8 | 8.925169...
4 | 0.483838... | 9 | 18.571837...
5 | 0.996243... | 10 | 38.650937...

Table 4.1: Values for 1 <n < 10.

for any € > 0 and T sufficiently large. This implies that the second-order term in Theorem
has the growth T/(logT)?". We highlight that this term has a decreasing order of
magnitude as n grows. Furthermore, assuming the pair correlation conjecture in the form
, and using integration by parts, we find, as T" — o0

JOO Fla) da = ! + o(1).

1 ()é2n+2 2n + 1

Corollary 4.2. Let n = 1 be an integer. Assume the Riemann hypothesis and the pair

correlation conjecture (1.3.13). Then

r n T T
f |Sn(t)|2dt=C—2T— 5 +0< 5 )
0 2m dn(2n + 1)72 (log T)™" (logT)™"

as T — o, where Cy, was defined in (4.1.6]).

4.1.2 Outline of the proof

Our proof follows the ideas developed by Goldston in [53], and involves additional tech-
nical challenges. In Section we start by obtaining a new representation formula for
Sn(t), for n > 1, associated with a suitable real-valued function f,,. For each n > 1 define
the function f, : (0,2) — R as follows:

fo(@) = (4.1.8)

gt foo . 2sinh (y(1 — 2))
al Jo Y (e + (—1)nt e )

To get the desired formula for S,,(t), we combine an explicit formula due to Montgomery
[81] with an expression for S, (t) implicit in the work of Fujii [48] (see also [19, Lemma 2])
that depends on the logarithmic derivative of {(s). Our formula relates S, (¢) to a Dirichlet
polynomial over primes involved with the function f,, a sum over the zeros of the Riemann
zeta-function, and a few extra terms that depend on the parity of n. By squaring and
integrating, we obtain an expression for the second moment of S, (¢). Using the asymptotic
behavior of each term in this expression, we obtain Theorem[4.1] These asymptotic formulas

will be obtained in the following sections. We highlight that some of the additional technical
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difficulties come from controlling both the imaginary and real parts of the logarithm of {(s),
which will have repercussions throughout this chapter.

In Section we analyze the second moment of the sum over the zeros of the Riemann
zeta-function. Following Goldston, we use the ideas developed by Montgomery [81] to
express sums over pairs of zeros of ((s) in terms of the function F'(a) defined in .
In Section [4.4] we analyze the terms associated with the sum over primes. Here, we use
an argument of Titchmarsh [I0I] in the estimate of certain integrals involving S, (t) with
oscillatory functions, which have some peculiarities when n > 1. Combining the terms
in an appropriate way and using properties of f,, we can take advantage of a surprising
cancellation in our analysis. Finally, in Section [4.5] we analyze the constants C),, numerically

using some estimates of sums with prime numbers that could be of independent interest.

4.2 The representation for the second moment of 5,,(t)

4.2.1 Representation lemma for 5, (t)

We start by obtaining a new representation for the functions S, (t) for n > 1. This
representation connects S, (t) with the zeros of the Riemann zeta-function and the prime

numbers.

Lemma 4.3. For each fited n > 1 let f, : R — R be defined as in (4.1.8)). Assume the
Riemann hypothesis. Then, fort =1 and x = 4, we have:

1 +2 i(y—t) 1 OO ynH 2
Sp(t) = Im {i"+2¢i(1—1) g d
®) mn! (log )™ ; m i e }L v+ ((y—t)logz)? eV + (—1)ntley 4
1 i A(m) logm
- I n it o
T K;@ m {im }\/ﬁ(logm)wr1 / (logaz
Im {i"} t Vi
n ot 08 - T O s
T 7(log x)n+1 %o T <t (logx)””)
(4.2.1)

where the first sum runs over the ordinates of the non-trivial zeros of ((s), and p, =

2711 —27™)¢(n + 1) when n is odd, and zero otherwise.

Proof. Assuming RH, by [19, Lemma 2|, we have for n > 1 that

Su(t) = =+ Im {Z" foo (0 —1/2)" 2/(0 i) da}. (4.2.2)

T n' 1/2

Let us analyze the integrand in the above expression. By an explicit formula of Montgomery
(see [53, Eq. (2.1) and p. 155]), for 2 > 4 and s = o + it with 0 > 3 and ¢ > 1, it follows
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that

27712 g(o +it) — 2'/?70 <g(l — o0 +it)

B xi(’y—t) A(m) 150_1/2 xl/Q—o
= (20— 1); (c—1/22+(y—1)2 Z mit < me  mlo )

m<x

tal ( (o= it2)?1_—10 - it)) +0 (x_m(i 12 >

First, we need a relationship between %(O’ + it) and %(1 — 0 + it) in the above formula.
Using the functional equation of ((s) in the form (1 —s) = 7752175 cos(7s/2) I'(s)((s), the

reflection principle, Stirling’s formula and the bound |Re {tan s}| « e~ 2™ for [Ims| > 1

(4.2.3)

we obtain for t > 1 and o > %:

! / 2
Rei_(l —o+it) = —Rei_(a—l—z’t) —log% +O(Ut>. (4.2.4)

By [53, Eq. (2.3)] we also get

/ / _
Imi(l—aﬂt)=1mi(a+¢t)+o<g t1/2>. (4.2.5)
Then, combining (4.2.4]) and (| -, we obtain
¢ Cirrit—toet+0(%
C(1 o +it) = C(U-‘rlt) log2ﬂ+0 o)

Inserting it into and ordering conveniently, one can see that
</
<x0—1/2+(_1)n+1m1/2—a'> Z(U +it)

:-xl/z—c'(( 1) (o + it) + C,(J—i-zt))

¢ ¢
:L,i('y—t) A(m) xo‘—l/2 x1/2—0'
20 — 1 — : —
+ ( g >§ (0_ _ 1/2)2 4 ("Y _ t)2 mZ<:x mt ( me ml-o >
¢ . 20 — 1 o?
o 1/2—0 1/2—it 0" 52 . 1/2—0
T log o— + ((a—it)(l—a—it)>+0<t(x +z )>

(4.2.6)

Dividing the above expression by Cy(0) := x7~ 12 4 (=1)n+1gl/2=o

[E23), we get

Si(t) = 1{0@ (Ucn(lg)nlm {z’”((—l) Cc/(a—i-zt) g(a—i—it))xlm"}da

7TTL' 1/2

and inserting it into
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1 [® 0—1/2 (r=1)
I (20 — 1) d
ol LZ G Z a—l/z (v—t)Q} 7
1 0 -1 2 A o 1/2 1/2 o
f (0 / Ing @( =)}
7m‘ 1/2 =, m mo mi=o

20 -1
in 1/2 it
(a—zt)(l—a—it))}da

JOO g - 1/2 ( —5/2 4 xl/ZfJ) do
12 Cnl t

=1 n(z,t) + I27n(m,t) + I3 (2, t) + Lo (z,t) + I5 n (2, t) + 0(16,n(1:,t)).

We analyze each term in the above expression.

1. First term: Using the fact that Im {i"((—1)"2z +2z)} = 0, for z € C and n > 1 we get that
I p(x,t) = 0.

2. Second term: Using Fubini’s theorerrﬂ and the change of variables y = (0 — 1/2) log , it
follows that

(o0 —1/2)" ! 1
12 (0= 1/2)? + (y — t)? 2012 4 (=1)n+1gl/2=0

n+1 9

do

Iy p(x,t) = ZIm (im0~}

!

1 y
- = I n+2 i(y—t)logx f
m!(logﬂf)"; m i } o ¥2+ ((y—t)logx)? e¥ + (—1)n+le—y

dy.

3. Third term: Recalling that f,(z) is defined in (4.1.8]), similar computations give us

—i A(m) logm
I3 (2, 1) ngwlm{l m~" Vm(log m)n+1 fn<10g$>'

4. Fourth term: Note that when n is even, we obtain that I ,(x,t) = 0. Let us suppose
that n is odd. Then  C, (o) = 2cosh((c — 1/2)logz). By a change of variables and [64,
Eq. 3.552-3] we get that

Im {i"} o [ (o—-1/2)" zl/2—o
2mn! 2o 1/2 cosh((o —1/2)log z)
Im {i"}

t
=Y J omn-lp_9n 1) log —.
7 (log z)n+1 ( )i+ 1)log 2r

Iyp(x,t) =

5. Fifth term: Using the same change of variables,

(0 —1/2)" " 1

d
1o 1@ —it)(1— 0 —it)| 2712 4 (—1)rrigi2=e 7

\I5.n(z,t)] <« VT

3It is justified by the fact that the number of zeros on the interval [¢,¢ + 1] is O(logt).
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o0 n+1 1
vz f dy

(logz)™ Jo |( 1/2 —zt) log )2 — 2 e¥ + (—1)n+le—y
n+1
<< x dy « Ve .
log x)n+2 0 ey + n+1e—y t (].Og x)n_;’_Q

6. Sizth term: As in the previous term, we have

1
Ton(z,8)] € ———
o n(,t)] « t (log )1

Combining all the terms, we obtain the desired result. O

Note that in the above lemma we establish the connection between S, (¢) and the function
fn. The following lemma summarizes useful information related to the function f, and a

new auxiliary function g,.

Lemma 4.4. Let n > 1 be an integer and f, : (0,2) — R be the real valued function defined
in . Then, the function g, : (0,2) — R given by

gn(z) = w (4.2.7)

satisfies the following properties:

(I) gn can be extended to the interval (—2,2), such that gn, € C*((—2,2)), and g2 is an

even function.

(II) For x € (—2,2), the function g, has the representation

1 (*® e + (—1)"Hlemy
n = — Yy dy. 4.2.
i) = [ (G ) (12

(III) In particular, g,(0) = 27"(1 —27")((n + 1) when n is odd, and zero otherwise.

Proof. Using the definition of f,, it follows that for x € (0, 2),

" 1 [ Ty —1)ntle—zy 1 [® (1—z)y —1)ntle—(z+1)y
f(x)+f e_yyn<e + (D" e )dy_ yn<e + (=" e )dy
0

n!o

zntl o opl e¥ + (—1)ntle—v eV + (—1)ntley
1 (™, . 1
_ = Ty qy —
=), v T =

where in the last equality we have used [64, Eq. 3.351-3]. This implies that

1 (® e 4 (—1)ntle~y
- —Y,n
mia) = [ (e ) an (129

for = € (0,2). Using dominated convergence one can see that the right-hand side of (4.2.9))
defines a function in C* ((—2, 2)) Then, this representation allows us to extend the function
gn to (—2,2). On the other hand, g,(—z) = (—1)"*1g,(x), and this implies that g2 is an
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even function. When n is even, g, is an odd function and therefore g,(0) = 0. When n is
odd, using [64, Eq. 3.552-3] we get
1 0 efyyn

10 = 5 | ay =21 -2 ),

n! coshy

4.2.2 Proof of Theorem [4.7]

Lemma allows us to obtain the second moment of S, (¢) in terms of certain integrals
depending of each summand involved in . Let n = 1 be a fixed integer. Using Lemma
[4.3] we have for ¢ > 1 and = > 4 that

Su(t) — In(,t) — Inn(z,t) = Ion(z, 1) + O (\/5)

t (log x)n+2
where
1 yn+1 2
T t) = I n+2 i loga}f d
2a(2:1) 7m!(logx)"%1 m i } 0 ¥+ ((y—1t)logz)? e¥ 4+ (—1)nt+ley Y
logm
T t I —it ( )
3(, mgx m {i"m }\F(logm)mrl In logz )’
and

Im {:"} t
I 0 =g, — T e b
4nl) = tin 7(log x)n+! C o

Then, for T' > 3, squaring the above expression and integrating from 1 to T we obtain

T T T T
J 1S, (1)) dt = f [Ton(z, t)|* dt + 2f Sy (t) I3 (z,t) dt —f I3, (2, )% dt
1 1 1 1

T

T T
f [Ty (2, t)|* dt + 2f Sy () Iy (,t) dt — QJ n(z,t) Iy (x,t) dt
1 1 1
n(z,t
t

\/‘% T ‘IZ ) )’ T
+O<(1ng)n+2 1 dt ) +0 (log )21 )"
(4.2.10)
Using the continuity of S,,(t), we get
T T
f 1S (8)]2 dt = J 1S (8)]? dt + O(1). (4.2.11)
1 0

86



Now, let us analyze the right-hand side of (4.2.10)). Note that u,, = 0 when n is even. Then,
we have that

T I )2 T ¢
_[ |14m<x,w|2dt::yi(1“{l})‘[ og? L s
1 1 2w

72(log z)2n+2
B TiegT (4.2.12)
=——"2——Tlo — .
72(log ) 2n+2 8 (log 7)21+2

Furthermore, using the relation S} () = S, (t), the bound S,(t) = O(logt) (see (4.1.1)),
and integration by parts, we obtain

2Im {i"}
(log T n+1

T log?T
2f Su(t) Inn (@, ) dt = 1 S;+1 )log —dt 0<( o8
1

log x)nJrl

>. (4.2.13)

Observe that by (I) from Lemma it is clear that |f,(y)| < 1 for y € (0,1]. Then, using

the estimate A(m) < logm and integration by parts, we have

T
‘QJ Ig,n(.li,t) I47n(l’,t) dt
1

I —i —dt
« log:c yntl r;xflogm "+1J m {im "} og ‘

log T Z flogT
(log z)" 1 \/‘ (log z)"+1°

<

(4.2.14)

We estimate the first error term in (4.2.10]) using Cauchy-Schwarz to get

1/2
T T n T
VT LRGN ﬁ(f \IQ’n(x,t)]zdt> . (4.2.15)
1

(log z)"*1t J; t (log z)n+1

Let us define the following integrals:

T T
R(x,T) :f |Ion (2, )| dt, H,(z,T) = QJ Sp(t) I3 (0, t) dt,
1 1

and

T
Gnlz,T) :f I (2, 1) 2 .
1

Plugging (4.2.11)), (4.2.12)), (4.2.13)), (4.2.14) and (4.2.15)) into (4.2.10) gives us

T 2
2 94— Hn 2
Jo |Sn(t)]” dt = Ry (x,T) + Hp(z,T) — Gp(z,T) — 2 (log )72 Tlog“T

TlogT xRy, (x,T) zlog?T
O (togerm) + Ot ) + ooy

Choosing z = T?, for a fixed 0 < 8 < %, we get that

(4.2.16)

T
f Su(O2 dt = Ry (TP, T) + Hy (TP, T) — G(T°,T)
0

87



2 T T T2\ /R, (TB. T
72[32n+2 (log T)2n (log T)2n+1 (log T)n+1

We conclude our desired result by using the formulas for R, (7% T) and H,(T?,T) —
Gn(Tﬁ, T) given by Propositions and respectively. We remark that by Proposition
and (4.1.7)), we can use the bound R, (T?,T) = O(T) to estimate the error term. O

In the following sections, we will concentrate on obtaining the asymptotic formulas for
R, (z,T),Hy(x,T) and G,(x,T'). Throughout these sections, we will assume that n > 1 is

a given fixed integer.

4.3 Asymptotic formula for R,(x,T): The sum over the

zeros of ((s)

Our objective is to evaluate the mean square of the sum over the zeros of the Riemann
zeta-function that appears in (4.2.16)). We recall that for T > 3 and = > 4,

1
n ’T =
Bu(@, T) 7r2(n!)2(logx)2"
42 i(y—1)1 i 2 :
I n+2i(y—t)logx dy| dt.
Z m i }J 5 (1= B log o) (v + (—1)+1ev) ¥

Lemma 4.5. Let g, be the function defined in (4.2.7). Assume the Riemann hypothesis.
Then, forT = 3 and x = 4 we have

Ry(z,T) ! 3 Fal(y —+")log )+o< log® 7 ) (4.3.1)
n\Ts L) = Nt n\\7T =7 x oo 712n )’ -
(logz)z+t | = _, (log z)

where the function k, : R — R is given by

E©) 931(271%), if €] < 35 (432)
T L T :
Moreover, we have that
—~ 1
|kn(y)| « min {1, W} (4.3.3)

Proof. Define the function

2
y? + u? (e¥ + (—1)"tlev)

(1) = T {i"+2e W}f dy.
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Since |hy,(v)| « min{1,1/u?} « 1/(1 + u?), using Fubini’s theorem we have

Rp(z,T) = TE logx o Zf v —t)logz) hn((y — t)log z) dt.

Note that h,, is an even function when n is odd and h,, is an odd function when n is even.

Using an argument of Montgomery [81, p. 187] (see also [53, p. 158]) one can see that

log® T
Rn(z,T)=—; J ho((y — t) log z) hy (Y —t) log ) dt —|—O<>
m2(n!)?( logm 0<§<T ) hn(( ) ) (log x)?n
(_1)n+1 , < 10g3T >
= hn # hp((y =) logx) + O —————= .
72 (n!)?(log x)2"+10<§<T ((r=7) ) (log x)?n

(4.3.4)

Let us calculate the Fourier transform of h,. Using Fubini’s theorem, it follows that for
£E>0

a(g) _ J_ (Im {Zn+2 zu}J Y Py o f)”*ley) dy) (cos(2m&u) — isin(2mwéu)) du

_ n cos(27T§u) cos(u) 4yt
= Im {i +2}J <J Iy du) (@ § (1) i) dy

i () f ( f sin(2nu) sin(u) du) et

y? +u? (ev + (=1)"Hlev)

where we have used the parity of the involved functions. Then, using the formulas [64, Eq.
3.742-1 and 3.742-3] we write

e} n
70 — ‘n+2 —|2mE—1ly —(2rE+1)y )
hp(§) = 7wIm {i""*} L (e +e ) CENEEErE= dy
o0 n
o -n+3 —2rE—-1ly _ —(27€+1)y Yy
im Im {i }L (e e ) (o (Do) dy.

For 27¢ > 1, making a separate computation of the n odd and n even cases, using [64, Eq.
3.351-3], we obtain

n!

}?n(g) = (Im {i”+2} 1Im {z”+3})W.

On the other hand, for 0 < 27 < 1 we obtain that

2 cosh(27&y)
(e + (~1pien)
2sinh(27y)
@+~ e )

() =t 72 [ Ty
0

Q0
— i Im {i"3} J e Yy"
0
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Defining the even real-valued function

(*1)71-&-1 P

kn(§) = W(hn(ﬁ)ﬂ

we have

- (_1)n+1

kn(y) = W(hn * hn)(y)7

and this implies in (4.3.4) that

log® T )

Rn(%T):(logml)?W 2 WW‘W"“)*O(W

0<y,Y'<T
Finally, we calculate k,. For 27§ > 1 we obtain

—1 il N+ . n+ n! ? 1
9 = St () = it (99 5 ) = s

and using the parity of the involved functions, we get that the above expression holds for
|27r¢| = 1. On the other hand, for 0 < 27§ < 1, we have that

—1)n+1 maoy [C —y n  2cosh(2m
kn<s>=(wz(,)ﬁ)z<“m{z ) [Cemr AR

2
2sinh(27&y)
eV + (—1)"tley) dy)

o n+3 OC -y, n
imIm {i""°} L e Yy (
= gn(278),

where in the last line we have treated separately the cases n odd and n even, and used

(4.2.8). Using (I) from Lemma it follows that the above expression holds for |¢| < %
To prove the estimate ([4.3.3)) (see [53, p. 161]), we use that k, € L!'(R) implies \a(f)\ « 1,
and that integration by parts twic implies |a(y)| < ﬁ O

Finally, the following proposition establishes the relation between R, (z,T") and the
function F(«,T).

Proposition 4.6. Let 0 < § < 1 be a fired number. Assume the Riemann hypothesis.
T

Then,
1\ 1 ® F(a) 1 2 12
~2m2(log T)2" (A" * 2n> B2 + ( | a2nt? dor — 2n> + 32n+2
L0 T+/loglogT
(log T)2n+1/2 )

R,(T°,T)

4The function k, is absolutely continuous and has bounded derivatives on R — {J_rﬁ}
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as T — oo, where

A, = Jl ag?(a) da, (4.3.5)

and py, is defined as in Lemma[{.3

Proof. Let us analyze the main term in (4.3.1). The estimate 3)) and a classical argument
[53, p. 161] imply that

S ka((y=9)logz) = D) ka((y =) logz)w(y =) + O(T),  (4.3.6)

0<v,Y'<T 0<v,y'<T

where w(u) = 4/(4 + u?). Letting x = T, from (1.3.5) one can see that

Z Eﬁ((v — ) logz)w(y—+) = % OOOO F(a)ky, <2:5> da. (4.3.7)

2
0<y,y'<T (2m)*5

To evaluate the integral on the right-hand side of (4.3.7), we use the fact that F'(«) is even
and we split this integral into the intervals [0, 3], [,1] and [1,00). Moreover, we calculate

these integrals using the asymptotic formula ADD REF for F(«): As T'— o0, we have

F(a) = (a+T *1ogT) (1 + o(1)), (4.3.8)

uniformly for 0 < a < 1, where o(1) = O(\/@)'
1. On the interval [0, B]: Note that, using (I) from Lemmal4.4] we have that g2 () = ¢2(0)+

O(a?) for a € [0,1]. Then, using (4.3.2), (4.3.8) and the fact that 58(1) T=2810g T da =
1+ 0 (ks

0?7 ) Ve get

J‘F ( )da—<WJ:aﬁﬁmda+¢§D+O<b;T)>ﬂ+oﬂ»

We remark, by (III) from Lemma that ¢2(0) = 4p2.

n

2. On the interval [B,1]: Here, by (4.3.8), F'(a) = o + o(1). Then, we handle this integral

using (4.3.2)) to get

1 1 2n+2 1 1
L F(a)k (27rﬁ> da = L (a+0o(1)) (i) da = %62 — %52n+2 + o(1).

3. On the interval [1,00): In this case we write

[ ()i [ ()

Finally, inserting the above estimates in (4.3.7)) and combining with (4.3.6) and Lemma

we conclude the desired result. O
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4.4 Asymptotic formulas for G,(z,T) and H,(z,T): The sum

over the prime numbers

4.4.1 The terms G,(z,7) and H,(z,T)

We recall that, for T' > 3 and x > 4, we have defined

(@, T) = J

2
dt

it A(m) logm
X i) e ()

and

Hy(z,T) = =) (J S, (t) Tm {i"m "} dt) \/m(jlt)(gmn)z)”ﬂ fn<11(:)ggzl>. (4.4.1)

We can get the following expression for G,,(z,T') using similar computations as Goldston.

Lemma 4.7. ForT > 3 and x = 4, we have that

Gl 1) = Ly A fZ(lOgm)JrO(xQ).

272 = m(logm)?nt2 log ©

Proof. See [53, pp. 164-165]. O

The expression for H,(x,T') is more subtle, since it requires some modification to the

computations of Titchmarsh [I0I] that arises when n > 1.

Lemma 4.8. Assume the Riemann hypothesis. Then, for T = 3 and x > 4, we have

T A?(m) logm
H,(z,T) = — .
(z,T) 72 Z m(log m)2n+2 / <log:r

m<x

> + O(z?1logT).

Proof. First, let us calculate the integral inside of (4.4.1). Using integration by parts in

(4.2.2)), it follows that, for ¢ > 0,

Sn(t) = 1 Im{(infoo (0 —1/2)" ' log((o + it) da}.

7'[' n — 1)' 1/2
Then, using the identity

(_1)nin+1

Im {i"m "} = 5

(mit+< 1)”+1m*”),
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and Fubini’s theorem, we get

T
f S, () T {3™m ™"} dt
1
1

0 T
= — o— "1 Re og (o + it)(m™ )Ly, it o '
= 27r(n—1)!£/2( 1/2) R {L log ((o + it)( +(—1) )dt}d +0(1)

(4.4.2)

Now, we compute the integral from 0 to T, following the idea in [101, Lemma ~]. Let m > 2

be a natural number and % < 0 < 2. Consider the integral

f log ¢(s) m®ds,
R

where R is the rectangle with vertices o, 2, 2 + 4T and ¢ + ¢1 with suitable indentations
to exclude the point s = 1. The function log ((s) is analytic inside the contour R, and the

radii of s = 1 may be made to tend to zero. Then, using Cauchy’s theorem we have that

T
i J log (o + it)m°t" dt
0

2 T 9
- f log ¢(a) m® da + zf log ((2 + it) m2t dt — f log C(a + iT) m*+T da.
0

[ g

Note that Si log ¢(a) m® da = O(m?). Then, by [I01, Lemmas « and ] we get that

T

; A

j log ((o + it)m™ dt = ﬂT +0(m* 7 logT). (4.4.3)
0 m? logm

Similarly, using the integral

log ¢(s)m™*ds,
oR

around the same contour, it follows that

T
f log C(o + it)ym~"*dt = O(logT). (4.4.4)
0

Therefore, combining ({.4.3) and (£4.4), we get for 1 < o < 2 that
g ; it n+1, —it A(m) 2—0
log (o +it) (m" + (=1)""'m™) dt = ————T + O(m* 7 logT). (4.4.5)

0 m? logm

On the other hand, using the expansion of the logarithm of ((s) and Fubini’s theorem, we
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have for o > 2 that

T ) ) A(k) T mz‘t + (_1)n+1m—
log C(o + it) (m® + (=1)" M m =) dt = J A dt
Jo ( ( ) ) 1§2 ko logk ) kit

1)L, 2t gt
me logmL +=DTm )

[ (2 )
k#m

A(m) 1
- m"long O<Z ko ) 0 i 7 og(m/F)|
;ém

k=2
k
A 1
ﬂ T + ol — ,
m? logm 20

where in the last sum we have used that ) x>0 m is bounded (see [101], p. 451]).
k#m

Therefore, inserting (4.4.5) and (4.4.6]) in (4.4.2)) and using [64, Eq. 3.351-3] we have

(4.4.6)

A(m)T
2my/m(logm)n+tl

T
J S, (t) Tm {i"m ™"} dt = +O0(m*?1og T).
1

Inserting it in (4.4.1)) we get

logm mA(m)
(z,T) 772 Z logm 2n+2 fn(logz) +O< Z (logm)"“

<x m<x

1

fn( ogm) ’ logT>.
log

Finally, using the bound |f,(y)| « 1 for y € (0,1] in the error term, we get

2 oz (1o )

m<x

4.4.2 The power of cancelation in H,(z,T) — G, (z,T)

Here, we will obtain the asymptotic behavior for the difference H, (T?,T) — G, (T?,T),
as T — oo. It is possible to obtain asymptotic formulas for H,(T?,T) and G,(T?,T)
independently, as we did in Proposition for R,(T?,T). However, the expressions are
much more complicated, so we will take advantage of a surprising cancellation in their

difference.

Proposition 4.9. Let 0 < § < % be a fixed number. Assume the Riemann hypothesis.
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Then,

H,(T?,T) — G (T ii — ! A+ —
e 2m? logm 2”+2 272327 (log T)" | " 2n

T
+ 0 gy )
as T — oo, where A,, is defined as in (4.3.5)).

Proof. Using Lemmas and and completing the square, we get for x = T,
H,(T,T) = Gu(T7,T)

T A?(m) logm o (logm 28
C2x2 Z m(logm)2n+2 [2fn<logx> In (log:v)} +O(1™ logT)

[\

m<z
T A%(m) logm \ 1 9
S W ULV 1—f, O(T*log T
272 mgx m(logm) 2"+2 - on2 mZ<x logm 2””[ 4 (logm)] +0( 0gT)
T A2(m) <logm> 9
= - - +0(T*" logT).
272 ngx m(logm)2n+2  272( log:): )2n+2 ";m log x
(4.4.7)

Using Lemma and partial summation, it is clear that

Am) G A(m) | .
Z W B ;2 m(log m)2n+2 B 2n(log z)2" +0 (\/E(log 117)2"_1> . (4.438)

m<x

Let us analyze the second term in (4.4.7)). By the estimate |g,(y)| « 1 for y € [0, 1], we get

A*(m) , (logm log’p o (logp
> - gn<10g$>_2 . g"(logx>+0(1)‘ (4.4.9)

m<x p<T

To analyze the sum over primes on the right-hand side of (4.4.9)), we useﬂ

log”p  log®y
Ply) =Y, = —— +O(logy),
Py p

for y = 2. Then, using integration by parts and the bound |g,(y) g,,(y)| < 1 for y € [0, 1]

we get

Z log? lo @t log u
P log x - log z

pPsSZT

1
J ag’(a) da) log? 2 + O(log x).
0

(4.4.10)

Therefore, combining (4.4.8)), (4.4.9) and (4.4.10) in (4.4.7]), we conclude the proof of the

proposition. [

This can be obtained using integration by parts in [84, Theorem 2.7 (b)].
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4.5 Computing C, numerically

In this section we study the series that appears in the main term. For each n > 1, let

C, be the series defined in (4.1.6)), i.e.

o A(m)

Cn = )2n+2'

=, m (logm
Then, Theorem [{.1] implies that

[

52 T.

T
f 1S, (1)[2dt ~
0

Clearly, C,, satisfies the estimates

1 <0 < 1L, A4
2(log2)2n ~ " T 2(log2)2n - (log 3)2n’

for some universal constant A > 0. Since log2 < 1, then C,, — o as n — o0, with

1
" 2(log 2)2n

Let us obtain numerical bounds for C,. To do this, we calculate numerically the first z,,

terms of the series and obtain explicit bounds for the tail

2'm
V(z) = Z L

iz m (logm)*" %

Lemma 4.10. Assume the Riemann hypothesis. Define

M(z) == ) A*(m).

m<z
Then, for all x > 107,

—0.047/z(log z)® < M(z) — (zlogz — x) < 0.057v/z(log )3, (4.5.1)
and _ 0.017n + 0.167 1 0.020n + 0.181

< V()

gt < (4.5.2)

— < .
2n(logx)?™ ~ \/z(logxz)?n—1

Proof. We recall an explicit version of the Prime Number Theorem error term under RH

(see [92, Theorem 10]): letting 0(z) = 3, ., logp, for all x > 600 we have

0(z) =z + O* (VEg:Tng).

We start by obtaining explicit bounds for N(z) := >} __log?p. Using integration by parts

p<T
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we have, for x > 105

T

N(z) = N(600) + J logy df(y) =xlogz —x + ¢

600+
N (\/Elog?’x) O*( 1 Jm logzydy>7
8 81 600 \/7

where ¢ := N(600) — 6(600) log 600 + 600 = 62.9734... The above integral is bounded by

1’”10gy long flogx 3
dy < < 0.00692+/x 1 .
87'(' 600 \/7 y 8 0 f 47 \/E 08 T
This gives
N(z) = zlogz — 2 + co + O*(0.04671/z log® z). (4.5.3)

In particular, we obtain for > 10° that N(z) < zlogz. This inequality is also true for
45 < x < 10° by numerical experiment. Now, using these estimates for N(z), we obtain
bounds for M (z) as follows:

Z log?p < Z A%(m)
pP<T m<zT

log «
Llog 2J

—Zlogp—l—Zlogp—l— Z Zlogp

p<T 2<1: k=3 pk<x
1
< N(z) + N(vz) + l(;igzv(e/})

< zlogx — x + ¢y + 0.04671v/z log® = + 0.5/z log = + 0.4809¢/z log? x
< zlogz — x 4 0.0568y/x log? z,

for z = 10°. The lower bound follows from (4.5.3) and the fact that cg > 0. This proves

(4.5.1). Finally, let us prove (4.5.2)). We write M (z) = xzlogx —x + E(x). Then, integration
by parts gives us

©dM(y) 1 E(z) “ E(y) (2n+ 2+ logy)
Vo(z) = J = L y2(log y)2n+3 d

o+ y(logy)?"+2  2n(logz)?  x(logx)?n+?

(4.5.4)
Using the upper bound for F(x) obtained in , we have for z > 105,
“FE 2 2+1 © (2 2+1
f (y) 2n+2+ Ogy)dng.OS?J (2n + 2 + logy)
+  Y*(logy)ts y*?(log y)?
0.057 j” (2n+2)d N 0.057 JOO 1 d
= loga ), g7 W Qogappt ], o

- 0.020n + 0.134
S Valoga)
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’ n \ T \ Lower bound for C,, \ Upper bound for C,, ‘
1 108 1.5651238 1.5651260
2 107 2.46232872 2.46232876
3 |5-10° 4.72243168 4.72243169
4 10° 9.55058572 9.55058573
5 10° 19.6650658 19.6650659
6 10° 40.7601579 40.7601580
7 10° 84.6986707 84.6986708
8 10° 176.175788 176.175789
9 10° 366.593383 366.593384
10 | 10° 762.938920 762.938921

Table 4.2: Upper and lower bounds for C},, for 1 < n < 10.

Similarly, for the same integral we obtain the lower bound (—0.017 n—0.110)/y/z(log )"~ L.

Finally, combining these estimates with (4.5.1) in (4.5.4]) we conclude (4.5.2)). O

Table 2 gives the bounds for Cy, applying (4.5.2)) for a specific value z,, in the small
cases 1 < n < 10. For n = 11, it can be verified that C,, is essentially given by its

-, up to an error of at most 0.1.

exponentially-growing first term m
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Chapter 5

The Riemann zeta-function: the

number variance of its zeros

This chapter is comprised of the paper [A4]. As described in Section our main goal is
to obtain a precise formula for the number variance of zeta zeros that holds simultaneously
in short and long intervals.

5.1 Introduction

Consider the quantity

JT [s(t+ ) —sw] a

0
As mentioned in Section [1.3.6] Berry [5] (see also [6]) has given a precise conjecture for the
asymptotic behavior for this integral (see Section for details. In the universal regime
of his model, when § = o(logT'), Berry conjectured an asymptotic formula that matches
exactly the variance of eigenvalues of GUE random matrices. However, when § » logT’, in
the so-called non-universal regime of his model, his prediction is no longer described by the

predictions from GUE and incorporates additional input from the primes.

Building upon ideas of Selberg [93] and Goldston [53], Gallagher and Mueller [50] and
Fujii [46] have given a conditional proof of Berry’s conjecture in the universal regime as-
suming both RH and versions of Montgomery’s pair correlation conjecture. In this section,
we introduce new ideas to prove novel results on the number variance of zeta zeros in the
non-universal regime when ¢ » logT'. In particular, we show that new input from both the
zeros and primes is needed in this regime, requiring information on the zeros beyond pair
correlation (since we no longer expect GUE behavior in this range). In Section we give
three different formulations of these results, stated as Theorems [5.2] - In Section
we show how our results give a conditional proof of Berry’s conjecture in the non-universal
regime assuming RH and a conjecture of Chan [23] for the pair correlation of zeta zeros in
longer ranges (which examines how often gaps between zeros can be close to a fixed nonzero

value). Roughly, pair correlation studies the distribution of gap sizes localized near zero
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with respect to the average spacing, whereas our new results require information about the

distribution of gap sizes localized near other points.

Before stating our new results on the number variance of zeta zeros, we first revisit the
work of Selberg [93} [94] and Goldston [53] on the moments of S(t) and log|((3 + it)| and
the connection to the pair correlation of zeta zeros, which we described in Section [1.3.4
Analogous to Goldston’s result for S(t), our Theorem gives lower-order terms
for the second moment of log |((3 + it)| assuming RH, in terms of the pair correlation of
zeta zeros. Assuming Montgomery’s pair correlation conjecture, Theorem establishes a

special case of a conjecture of Keating and Snaith [72].

5.1.1 The variance in Selberg’s central limit theorem

Our first theorem of this chapter is an analogue of Goldston’s more precise result for
the second moment of log [((3 + it)|, refining the case k = 1 of the Selberg/Tsang result in
([3.9).

Theorem 5.1. Assume RH and let F(«) be defined by (1.3.5). Then, as T — o0,

T

T
Jlog2 C(5 +it)| dt = §loglogT +aT + o(T),
0

where the constant a is given by ((1.3.11)).

Assuming Montgomery’s strong pair correlation conjecture, we see that

1 = 1 1\ 1

“:2(1”“ 22<mz‘m>pm>’
m=2 p

and Theorem establishes a special case of a conjecture of Keating and Snaith [72]

eq. (97)]. We note that Keating and Snaith also made analogous conjectures for fami-

lies of L-functions in [71].

Though the statement of our first result is very similar to Goldston’s theorem, the proofs
are considerably different. One reason for this is easy to explain. From the formula for N(t)
in (I.3:2), we see that the function S(t) is bounded near the zeros of ((5 + it), with a jump
discontinuity at each zero. On the other hand, log |[((3 + it)| is not bounded near the zeros,
and can be arbitrarily large in the negative direction. These logarithmic singularities do
not substantially change the end result, but they do cause technical difficulties within the
proof. Another major difference from Goldston’s work is that our proof relies on a delicate
cancellation of main terms, which we accomplish by introducing the function g(x) in Section
Though an analogous cancellation of main terms was not present in Goldston’s work,
it is present in the work described in Chapter [d] where we introduced related functions to
obtain similar cancellations in the study of the second moment of the iterated antiderivatives
of S(t) (see Lemma. However, as we shall see, when considering log |((% +it)| there are
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important new technical differences in the properties of our functions due to the unbounded

discontinuities.

Remark. The error term in Theorem could be improved using additional assumptions
such as a quantitative form of the twin prime conjecture (see [25]), or a more precise con-
jectural formula for pair correlation by Bogomolny and Keating [9] or Conrey and Snaith
[38]. For details, see the work of Chan [24].

5.1.2 Number variance of zeta zeros

In a series of papers, Fujii [45], 46, 47] considered the 2kth moments of the difference
of S(t+ A) — S(t). Using Selberg’s methods, for T sufficiently large, Fujii [45] showed

unconditionally that

T
J (t+2) = SO dt = (;;%T@log(? + Alog T)* + O(T (log(2 + Alog T))k—1/2)
0

(5.1.1)

when 0 < A « 1 and, assuming RH, Fujii [47] showed that

T
k

J (t+A)—SH)]* dt = %T(loglogT —log [C(1 + zA)])k + O(T(loglogT)]%l)

0

(5.1.2)

when 1 < A < T. Fujii’s result in gives an asymptotic formula when AlogT goes
to infinity with 7" (sufficiently slowly). If AlogT « 1, then the main term and error term
in this result are the same order of magnitude and this result does not give an asymptotic
formula. Fujii’s result in has an error term of the same order of magnitude as
Selberg’s conditional result in . In particular, when k = 1, the error term in
is O(T). In this case, similarly to Goldston’s result for the second moment of S(t), the
contribution from the zeros of ((s) give a leading-order term of size T', whereas Selberg’s
method only treats the contribution from the primes as the main term. Realizing this, Fujii
[46] applies Goldston’s methods [53] to his own work and, assuming RH, he shows that for

0 < A =o(1) we have

[S(t+A)—S®))* dt ==

™

1 o

f 1 — cos(aAlogT) dov 4 f F(a)[1l - COSQ(aAlog T)] o
a a

0

O

1
+o(T),
(5.1.3)
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as T — oo. Gallagher and Mueller [50] had previously given a similar estimate in the
limited range A ~ @ assuming both RH and Montgomery’s pair correlation conjecture.
A calculation related to (5.1.3)) can also be found in recent work of Heap [68, Proposition
9]. Notice that the expression of the main term in ([5.1.3) is stated using information from
the zeros, in the form of F'(«). As we shall see, more information about the distribution of

the zeros of ((s) is required in order to accurately describe the situation when A >» 1.

Our next results refine Fujii’s calculation in by giving an asymptotic formula of
similar precision but with a much larger range of A. This requires expressing the main
term in a different manner, giving a better understanding of the behavior of the number
variance for zeta zeros for different sizes of A. To achieve this, we must overcome significant
technical challenges, as new main terms arise and a more careful consideration of the error
terms is required. Our result relies on finer information from both the primes and the zeros
of {(s). In particular, we require a variation of Montgomery’s function F(«) introduced by

Chan [23] in his study of the pair correlation of zeros in longer ranges. We deﬁneﬂ

Tiet=7"=4) w(y—+"—A), (5.1.4)
0<y,y'<T

2
Fa(a) = Fa(a, T) := TlogT

and we prove the following theorem.

Theorem 5.2. Assume RH and let 0 < A = o(log> T). Then, as T — oo,

w2 | 2i ¢
0

T A .
J[S(tJrA)S(t)]Q dt — T{1J<C(1+u) 2(1#) W) dt + G(A)
0

| [ 2F(a) — Fa(a) — F_a()
+ ZJ a?
1

da} +o(T)
and

[log ‘C(% + it + ZA)‘ — log !C(% + it)HQ dt

S

A
1 ¢ , ¢! , 2icos(tlogT)
= {%J<C(1+Zt)—<(1—lt)—t>dt
0

2F () — Fa(a) — F_a(@)
2

+6(A)+;f da} +o(T),
1

where

C(A) = Z Z (;2 - ;) ;n<1 — cos (Amlogp)). (5.1.5)
mz=2 p

LChan works only with the real part of Fa.
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We highlight that there is new input from the zeros contained in the function Fa, and
new input from the primes codified in the integral of the logarithmic derivatives of {(s) on
the line Re s = 1. The integral involving Fa is convergent and remains bounded as T" — oo
(see the remark after Proposition . Conceivably, Theorem continues to hold in a
much longer range of A. We give two alternative formulations of this theorem. Our first
reformulation better illustrates the connection to Fujii’s previous result in .

Theorem 5.3. Assume RH and let 0 < A = o(log? T). For y > 1, define

= Z A(n)? —ylogy + y. (5.1.6)
n<y
Then, as T — o0,
r T 11 (AalogT
Fistr - sopar= I [ [1-omtotosn)
2
0 0
IOOQF F, F
+J (0) = A<3)_ ~a(a) da 4+ c¢(A) ¢ +o(T)
2 «o
1
and
T 2
”bg|¢ it +iA)| —logl¢(} +if)| | dt
0
i (AalogT T F(a) - F, F
_7 fl—cos alog )da+1j2 — Fa(a) — F_a(«) da
2 a?
0 1

+ T c(A) + o(T),

2

Q0
E . . ofvlo v
c(v) := fz(yiz {vlogy sin(vlogy) + sin’ <gy> (logy + 2)] dy — —. (5.1.7)
y*log®y 2 2
1

Using Theorem the function c(v) can also be written in terms of the Taylor series
expansion of
¢ ¢ 2
1+it) — =(1—1at) + —
T = St +

about ¢ = 0. Note that, for 1 < y < 2, we have E(y) = —ylogy + y, and the prime
number theorem (unconditionally) implies that E(y) = O(y/logy), as y — 0. These two
facts, together with the inequality |sinz| < |z|, imply that c(v) is well-defined and that
c(v) « v?, for all v = 0. In particular, if A = o(1), as in Fujii’s case in , then the term
T c(A) = o(T) and can be absorbed into the error term. Moreover, when A = o(1), we show
that this integral reduces to the analogous term in 3) involving F () (see Section [5.6)),
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recovering Fujii’s result in this range. This reduction, while based on simple ideas, is quite
subtle, and requires another technical but straightforward modification of Montgomery’s

theorem for F'(a) to control some of the error terms.

As explained above for Theorem the proofs for the imaginary and real parts of
log ¢ (% + it) are similar, but the proof for the real part is significantly more difficult. For
this reason, we give the details only for the latter. Although we present the main steps of
the proofs of Theorem and Theorem in parallel, it is important to note that the
proof of Theorem [5.1]is independent of the proof of Theorem [5.3] Additionally, we will use
Theorem to control some of the error terms in some steps for Theorem (see Lemma

below).

Our second reformulation of Theorem illustrates the input from the primes and the
zeros in a simpler way. As we shall see in the next section, this has the advantage of allowing

for a simple comparison with a conjecture of Berry [5].

Theorem 5.4. Assume RH and let 0 < A = o(log? T). Then, as T — oo,

T
J[S(t A= S dt — % { S A (A ogn))
0

2
nnglog n

2F () — FA((;) — F_a(a) da} + o)

+

(0}

DN =
»—A%S

d

an
T
o ¢4+ + i) | = og o (4 + i) [
0

= T{ 2 A*(n) (1 — cos(Alogn)) + %

0
J 2F () — Fa(a) — F_a (@)
oy L log?n J

2 da} +o(T).

The proofs of all of our theorems rely on knowledge of F(a) and Fa(«) for |a] < 1.
It is known that F'(«) is real-valued, positive, and even. Moreover, refining Montgomery’s

original work [81], Goldston and Montgomery [58] showed that
F(a) = (T**1ogT + ) (1 + o(1)), (5.1.8)

uniformly for 0 < o < 1. Here, the term of o(1) is of size O(u%). In contrast, the
function Fa(«) is no longer positive, nor real, nor even; however, it satisfies the symmetry

relations

Fa(a) = Fa(—a) = F_a(a). (5.1.9)
Combining the methods of Chan [23] Theorem 1.1] with Goldston-Montgomery [58], it can
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be shown that

(A+1) T_O‘(%_E)
logT ’
(5.1.10)

1
VogT

Fa(a) = T72%log T+ aw(A) T~ 4 O( ) +O0(T™**) + O,

uniformly for 0 < a < 1 and small € > 0.

5.1.3 A conjecture of Berry

The Hilbert-Pdlya conjecture states that the imaginary parts of the zeros of ((s) corre-
spond to the eigenvalues of some self-adjoint operator, and this would imply RH. In 1973,
as a consequence of his work on the pair correlation of zeros, Montgomery [81] was led to
conjecture that the zeros of ((s) are distributed as the eigenvalues of a random matrix from
the Gaussian unitary ensemble (GUE), giving support to a spectral interpretation of the
zeta zeros. Montgomery’s conjecture is supported by numerical evidence of Odlyzko [8§],
which suggests that the GUE model holds for short-range statistics between zeros, such as
the distribution of the gap between consecutive zeros. However, Odlyzko’s evidence shows
that the GUE model fails for long-range statistics, such as the correlation between zeros
that are very far apart. In this case, Berry [0] suggested that these long-range statistics are

better described in terms of primes, instead of GUE statistics.

Berry [5] proposed a conjectural model for the zeros of ((s), as the eigenvalues of a
quantum Hamiltonian operator. His model is expected to conform to the behavior of both
short-range and long-range statistics of zeros, as described above. In 1988, Berry used his

model to conjecture an asymptotic formula (in terms of our notation) for

|s(t+ &%) - S(t)]2 dt. (5.1.11)

O

As described above, the universal regime of his model is when § = o(logT'), while the

non-universal regime corresponds to ¢ » logT.

We first briefly describe Berry’s conjecture following his notation. For E > 0, define

so that, by (I.3:2), we have N(E) = N(E) + S(E) + O(%). For m > 1, let 2, = N(ym)
be the renormalized zeros of ((s), so that the sequence z,, has average spacing 1. In what
follows, we let E/, x and Az be three large parameters, which we think of as going to infinity,
satisfying the relations Az = o(z) and z = N(E) ~ % log E. For L < z, let n(L;z) be the

number of renormalized zeros x,, in the interval [ac — %, T+ é] In particular, note that

n(Liz) = L+S<N1<x+ ’;)) —S(/\/l(x— ;)) +0<1°im> .

105




We define the variance as

:c-‘r%
V(Lsa) = n(Lio) L) i= o [ [nlLiy) — L dy

P(E)
log(E/2m)
that goes to infinity as F — o0. Berry’s conjectural formula [5, Eq. (19)] states that

Finally, we let 7* be another parameter, such that 7* = for some function ®(F)

V(L;z) ~i [log(2mL) — Ci(27rL) —27L Si(2nL) + 7L — cos(2rL) + 1 + o]

+ 1, i s EZ/?W sin? (7 Lrlog p/ log(E/27))

r2pr

+ Ci(2nL7*) — log(2nLT*) — v | ,

as E — oo, where g is Euler’s constant,

u

T o¢)
Jsmu du, and Ci(x) := fcosu (5.1.12)
0 T

The right-hand side does not depend on the choice of 7%, as E — oo. The universal regime
is when L = o(1/7*), where the term in the first set of brackets is the dominant (leading
order) term. See also [5, Egs. (20) and (21)] for simplifications in different ranges of L.

Translating to our normalization and our notation, Berry made the following conjecture.

Conjecture 5.5 (Berry, 1988). Let 6 > 0. Then, as T — oo, the following asymptotic

formulae hold.

(a): If 6 = o(logT), then

2
[S(t + lggg) - S(t)] dt ~ % [log(2m8) — Ci(278) — 276 Si(270) + 726 — cos(270) + 1+ 7]

Ot

(b): If § » log T, then

2 T A2(n) 276 logn
27r5
t+10gT S(t)] dtNﬂ[Z 2<1_COS<M>>+1

nnglog n

O%’ﬂ

In 1990, Fujii [46] proved an asymptotic formula for (5.1.11]), assuming RH, in the
universal regime where 6 = o(logT"). In particular, assuming RH and Montgomery’s strong
pair correlation conjecture, Fujii proves Berry’s conjecture in the universal regime (part (a)

of the above conjecture). However, Fujii’s proof relies on the fact that —0asT —

)
logT
in numerous places, and it is not obvious that his proof can be modified to establish part

(b) up to an error of size o(T).
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Assuming RH and a version of the strong pair correlation conjecture (in longer ranges)
due to Chan, we show that our formulae in Theorems - imply Berry’s conjecture
in both the universal and the non-universal regimes. Although Berry never conjectures the
range of ¢ for which part (b) of Conjecture holds, we verify his conjecture holds in the
range § = o(log% T). Conceivably part (b) continues to hold for ¢ in a much longer range.
We require the following generalization of the strong form of Montgomery’s pair correlation

conjecture due to Chan [23, Conjecture 1.1].

Conjecture 5.6 (Chan, 2004). For |a| =1 and A = o(log% T) , we have
Fa(a) = T2 w(A) (1 +0(1)),

uniformly for a in compact intervals as T — o0.

Corollary 5.7. Assume RH and Conjecture [5.0. Then, Conjecture holds for all § =
o(log% T) .

The restriction on § in the above corollary comes from Conjecture As we shall see,
the restriction A = o(log? T') in Theorems - corresponding to § = o(log® T)), arises
naturally in two different places. It first arises from the last error term in the formula (5.1.10))
for Fa(c) from [23, Theorem 1.1] (see Lemma [5.16]), and it again arises from estimating a
sum over primes in Lemma below. In the following sections, we attempt to state each

lemma in the largest possible range of A to clarify where these restrictions appear.

5.2 A representation formula for log|((1/2 + it)|

5.2.1 Some auxiliary functions

Following the ideas developed by Goldston [53], we must obtain a representation formula
for log |¢(1/2+1it)| in terms of a Dirichlet polynomial supported over prime powers and a sum
over the zeros of ((s). This is based on an explicit formula of Montgomery [81] and, in our
case, requires introducing three auxiliary, real-valued functions, whose technical properties

play important roles in our proof. For u € (0,2), define

o0
sinh[y(1 — u)]
= ————=dy; 5.2.1
= [ TR gy (52.1)
0
for u € (—2,2), define
0
e~ Y cosh(uy)
= | ———— = dy; 5.2.2
o) = [ o) ay, (522)
0
and for v € R\{0}, define
a0
y _dy
= — . 2.
h(w) cosuj coshy P21 a2 (5.2.3)
0
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Before stating our representation formula, we collect relevant properties of f, h and g in the
following lemma. This is similar to the ideas and functions used in Lemmas [1.4] and

and they will be used to obtain a delicate cancellation of main terms.

Lemma 5.8. Let f, h, and g be defined in (5.2.1)), (5.2.3)), and (5.2.2)), respectively. Then

(a) we have g € C* (=2, 2) and g is even;

(b) forwue(0,2), we have

(¢) we have h e LY(R) n L%(R), h is even, and

- g(2ma), if 2mla| <1
h(a) =7 1

—_— f 2 > 1.
27r‘a|’ Zf 7T|a"

Remark. We highlight that h has an unbounded but integrable singularity at the origin,
which is different from the situation in both [53] and in Chapter |4f We also note that f, g,

and their derivatives are uniformly bounded on the interval [0, 1].

Proof. First we consider g(u) as defined in ([5.2.2)). By the Dominated Convergence Theorem
we have that ¢ € C°(—2,2). The fact that g is even follows from the fact that cosh(y) is

even. Now let u € (0,2). Then for all v > 0, we know

0
1
- = Jeuy dy.
u

0

Using this representation for %, it follows that

1— f(u)

u

e V(e +e )

e~ Y cosh( uy
g dy = g(u),

cosh y

as claimed. Next we consider h(u) defined in (5.2.3). First, observe that h(u) is even by
construction. Next, we will show that h € L'(R). By the definition of h, observe that

u u
h(v)|dv < 2 dv du = =72
f](v)]v Jcoshujvﬂ—i—vQ v ﬂfcoshu o
B 0 0 0

which implies h € L'(R). Next, we calculate the Fourier transform of h(v) using the well

known Fourier pair
1 1

;W. (5-2.4)

ely) =e W and  G(¢) =
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Let a € R. Since h is even, we may assume a > 0. Using the variable change w =

(5.2.4)), it follows that

and

0
h(a) = J h(v) e 2™ dy
—o0

oo
COS v Y,
_ Ny > e 2miav dv du
coshu us +v
0

—00
) 0 . s (eu(%_a)gm‘w X eu(—i—@)?ﬂ'w) o d
_2Jcoshuf 1+ w? wau
0 —00
Q0
T 1 —u|1—2mal —u|1+2mal
_ ™ ™ d
2 Jcoshu(e te ) b
0
7 g(2ma), 0<2ma <1,
=31
2%’ 2ma > 1.
Clearly, h € L* (R), and therefore h € L?(R). This completes the proof. O

5.2.2 Representation formula
We now state our formula for log |((5 + it)].

Lemma 5.9. Assume RH. Forx >4, t > 1, and t # ~, we have

A(n)cos(tlogn) ,(logn log 2 log 5=
1 )] hl(y—t)1 us
og\C *it) Z Jloga] + Z nl/2logn / log x * 2logx
1/2
+0( ah )
tlog” x

Proof. We begin with the fact that, for ¢t # ~, we have

n<x

0 C/ |
log |¢(5 +it)| = Re =~ (o +it) do.
A

Now we use the slightly modified version of Montgomery’s explicit formula [81] obtained in

(14.2.6)). Forp=%4—1‘7,1’24,s=o+itwitho>%andt?l,wehave

€Ng — L
(7~ 2 +:c2 ”)Reg— o +it) Zcos ((t —~)logx) SU 2)
g3

—ZA cos(tlogn) <

n<T
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_ 23Re <(J fzt;(é — igz it)> 22 log (;ﬁ)
+0 <U; (x*5/2 + x1/2‘7>> . (5.2.5)

This 1mmed1ately follows from (4.2.6)) by letting n = 1 therein and takmg real parts. Divid-

1
ing by (772 + x2 ) = ZCosh((a — 1)log z) and integrating (5.2.5) from 1 to infinity, for
r>=4,t>1, and t # v we have

0
(c—3) do
1 +it)| ((t=)1
ogld(y+ Z“’S Og“’)f (0= 3)2 + (t = 7)? cosh((o — 3) log z)
1/2
0 1 1 d
gja_Q 3’}2_0 g
+ A(n (t1 -
;z COS og n) J‘ no nlfa 2 COSh((U — %) 10g x)
1/2
[ G-9 d
+z?Re | 27 J - 29 - d
0 (0 —it)(1 — o —it) cosh((o — %) log z)
. ) 1:%_” 1 ®o o2 (:E_5/2 +$1/2—o*)
27 J cosh((o — 1)log ) t J cosh((o — 3)logz)
(5.2.6)

By using the substitution, u = (o — 1)log z, the integral in the second main term of ([5.2.6)
yields

0 1 1

f ?72 2277 do _ 1 f<logn>
no n'=7 | 2cosh((c — i)logz)  n'/2logn’ \logz )’

1/2

where f is defined in (5.2.1)). Again, by the same substitution, for the first main term of

(5.2.6), we have

1
(0—3

chos ((t—~ logx)f ()2+?2—7)2cosh(( th [(t —+')log z],
/2

where h is defined in (5.2.3). Finally, the fourth term of (5.2.6) equals

0 1
log ﬁ f 277 d log 2 log %
o=———=".
cosh((o — 3)log ) 2log

1/2

The other terms are error terms and can be treated similarly to the proof of [53] Lemma 1].
Combining all the terms of ((5.2.6)) completes the proof. O
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log 2logt/2m
logx

for S(t) in [53, Lemma 1]. This comes from Stirling’s formula when analyzing the real part
of C—l( ), and it does not appear when taking the imaginary part. We use Lemma to

obtain an expression for the quantities we want to compute in Theorems [5.1] and [5.3] - We

Note that we have the extra main term when compared to Goldston’s formula,

now adopt some notation for the expressions we will consider. Henceforth, let T' > 4 and
A = A(T) be a function of T such that 0 < A « T?, for some fixed 0 < b < 1. For t > 1,

denote

Z ) cos tlogn)f<logn> and  B(t) := _Zh[(,y — t)log ], (5.2.7)

= n1/2 logn log ~

so that A(t) contains the information on primes and B(t) contains the information on zeros

in our expression for log[((1/2 + it)|. Additionally, denote

T T
Gr:=— | JA®))? dt, Go:i=— | |A(t+A)— A®)]* dt,
/ /
T
H, '=2JA()Iog|C( +4t)| dt,
T
Hy := 2J[A(t + A) — A(t)] [log ‘C( +it + iA)| — log ‘C +it)|] dt,
T1 T
Ry := J|B(t)|2 dt, Ry := J|B(t+A) — B(t))? dt. (5.2.8)
1 1

In the next result, we use Lemma [5.9| to write the objects in Theorems [5.1] and [5.3]in terms

of the above expressions G;, H;, and R;.

Lemma 5.10. Assume RH. Let 4 < x < T and let 0 < A « T, where b < % Then, as

T — o0, we have

T
()flog (3 +it)| dt = Gy + Hy + Ry — T'log® T

log? 2 +O<T10gT> +O<\/ZCR1)_

log? log? log?

— g

(b) [log‘(( —i—zt—&-zA)‘—log‘C —l—zt)Hth:Gg—i-Hg—i-Rg—i-O( 1; )—i—O( T2R2>.
log™ x log” x

Proof. Let 4 < x < T and let 0 < A « T®, where b < % By rearranging the terms in
Lemma, we have

log 2log %

1/2
B(t)+0< 5 ) log [C(5 +it)| — A(t) —

tlog”x 2logx
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Squaring the above expression and then integrating from 1 to 7" yields

VTR
R1+O( x21>+0< . )
log” x log™ x
T
log?2 T'log? T TlogT
ng C +it)| dt — Hy — Gy + —2 =28 = ( = )
/ 4 log”x log® x
. T
+0 JA(t)logtdt + O JlogK( +it)|logt dt| |, (5.2.9)
log x log ©
1

where we used the Cauchy-Schwarz inequality to bound the first error term on the left-hand
side. For the second error term on the right-hand side of (5.2.9), since f(v) is uniformly

bounded for all v € [0, 1], | cos(v)| < 1 for all v € R, and Sn” logt dt « logT for n > 2, we
see that

logt logT A(n) f
At dt « logT.
®) log x log x ;x n/2logn log z 8

me—_—

To control the last error term on the right-hand side of (5.2.9)), consider the antiderivative
of log |¢(3 + it)|. Assuming RH, it is known that

T

flogK( + it)| dt « logT.
1

(See [15, Lemma 2.2] for a slightly stronger estimate.) Thus, using integration by parts, we

obtain

T

log? T
jlogK( +it)|log t dt « 28
log x
1

log

By combining and rearranging all the calculations for the terms in (5.2.9)), we complete the
proof of part (a).
For the proof of part (b), since A « T®, we observe that for t > 1, x > 4, and £ > 0 the

Mean Value Theorem implies that

log 2 [log(HA) log o= | T3¢
2log x  tlogz’

so that this term is absorbed into the error bound. The rest of the proof of part (b) is
analogous to the proof of part (a). Consequently, the proof is complete. O

In order to conclude the proofs of Theorems and the following sections are
devoted to estimating the quantities G;, H; and R;.
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5.3 Contributions from the zeros

5.3.1 Auxilliary lemmas

Before we compute R;, we remark that the constant a as defined in (|1.3.11)) actually
has a mild dependence on T, since it is defined in terms of F'(a,T"). In this subsection, we
collect several useful technical estimates regarding the zeros and the function Fa (o, T), and

we show that this dependence on T" can be controlled in the proofs of our main theorems.

Lemma 5.11. Assume RH. Let T > 4 and A = O(log2 T). Then, for 5 >0, we have

2F(a) — Fa(a) — F_a(a) da « (1 +5) (1 + lo|gA2|T> and

2F () — Fa(a) — Foa(@)
2

A
da « 1+‘72|,
log=T

(07

Pe—8 P/

where the implied constants are universal.

Proof. Consider the identity

2F (a)—Fa(a) — F_a(a) =

2

872 (5.3.1)

TiOW 2miuy
TlogT Z €

0<y<T

du.

e ¢]
f e 1 — cos(Aalog T + 27 Au)]

—00

In particular, 2F () — Fa(a) — F_a(a) = 0. Lemma follows by modifying an argument

of Goldston [53, Lemma A] in a straightforward manner and applying Chan’s theorem for

Fa(a) in the form given in ((5.1.10)). O

Lemma 5.12. Let T >4, 0<|A|<T,0< H <T, and w(u) = ;7. Then,

@ >, =9 —Awy -+ —A) <« Tlog*T;
0<y,Y'<T

(b) > w(y—+" —A) « (H + |A| + 1) log? T;
T—|Al-1<yY'<T+H

© > wly—v—A)«logT;
0<y<T—|A|-1
T<y'<T+H

where the implied constants are universal.
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Proof. By interchanging v and +/, we may assume that A > 0. We have

Yo = A=y =A) = > (A+y —pwly—+—-4)
0<v,y'<T 0<v,y'<T
y—y'—A<0

+ D (v=7 - Dwy -+ -4)
0<vY'<T
Y=y —A>0

=71 + 2o,

say. We use the inequality

and the fact that there are O(logT) zeros in the interval [T'— A — 2,7 — A] to estimate Z;

as follows:

4
Z1< Z Z 1“1‘ Z Z m

0<y<T v—A<y' <y—A+2 0<y<T v—A+2<v'<T
logn
& logT +
Y owers Yy len
0<y<T 0<y<T v+2<n<T+A
« Tlog?T + Z log?(A 4+ T)

0<~<T

« Tlog®T,

since A < T. The bound Zy « T'log® T is similar. This proves part (a).

For part (b), since 0 < H < T, we use that there are O(logT') zeros in the interval
(n,n+1) (for 0 <n < T + H) to obtain:

> w(y -7 — A)

T—|Al-1<yy'<T+H

1
<logT 2 Z '
T—|A|-1<y<T+H 0<n<H+|A|+1 L+ (y=T+IA[+1-n—-A)
«logT Z 1« (H+|A|+1)log?T.

T—|A|-1<y<T+H

In the last line, we used that, since the summand is positive, we may bound the sum over

n by a sum over all integers, and the function

1
DT
neZl+(x+n)

converges to a continuous periodic function of x € R. In particular, it is uniformly bounded.

For part (c), note that, for 0 < v < T — |A] =1 and T < v < T + H, we have
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|y =9 —A| =T+ A —~ > 1. Then, using that w(u) < %, we have

1
S wbr-Semr Y3 2
0<y<T—|A|-1 0<y<T—|A|-1 0<n<H+1 (T +n+A=7)
T<y'<T+H
1
«logT —_—
©8 Z T+A—v

0<y<T—|A|-1

1
«log?T 2 ~ «log®T,
1<n<T+|A|

since |A| < T.

Lemma 5.13. Assume RH. For T > 4, let |A| <log?T, and let 0 < H < T. We have

(a) LOOW da = LOO F(z;T) da—i—O((Hi;,Ll)log?’ T);
(b)L 2F(a,T+H)—FA(a,CZM;—i-H)—F_A(a,T—i-H) da
:f:o 2F(04,T)—FA(Z,2T)—F_A(04,T) da+0((H+‘$|+1)l 3T>

Here, the implied constants are universal.

Proof. First, we prove a pointwise estimate for Fa(a, T + H) that holds in the larger range
|A| < T and is useful for both parts (a) and (b). By the mean-value theorem, for 6 € R, we
have

HI| 1

. . 1 H
10 _ i _ =
(T + H) T « and T+ H)log(T + H) _ TlogT <1+O<T>>.

Therefore, for A € R with |A| < T, we have

2 , , H
Fa(o, T+ H) = —— D (T+HOT Ry =y = A)+O0 ( ZFA(0,T + H) | .
TlogT 0<v,Y'<T+H T

To bound the last error term, one can see that |Fa(a,T)| < Fa(0,T) « logT (uniformly for
0 < |A| < T), analogously to the classical bound for A = 0. Now, to estimate the difference
|Ea(a, T+ H)—Fa(a, T)|, we separate the double sum over zeros in Fa(«, T+ H) depending
on whether the zeros lie in the interval (0,7 or (7,7 + H]. Using the triangle inequality,

we obtain
2 . , . ,
Fala, T+ H)=Fa(@ )| € o 37 |(T 4 H)2O=7'=8) - 7007 =B)u(y — o/ = A)
o8 0<y,y'<T
2m ,
-5 —A
* TlogT Y wly—+—-4)

T<vyy'<T+H
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2w
+ w(y—9"—A4)
TlogT 0<;LT

T<~'<T+H
2r , H
-4 —A)+ O | =logT
* TogT Z wiy =+ —A) + (T 0g>
0<y'<T
T<y<T+H

H
=Y1+Y2+Y3+Y4+O(TlogT),

say. By the mean-value theorem and part (a) of Lemma we find that ¥} « Z|a|log?T.
Since w(u) = 0, we may extend the sum in Y5 to apply part (b) of Lemma [5.12] Therefore,
Ys « £(H + |A] 4+ 1) log T. We estimate Y3 by further dividing the sum into two parts:

Moowly—v-8= > wh-v-A+ D whr-9-4)
0<y<T T—|Al-1<y<T 0<y<T—|A|-1
T<v'<T+H T<~'<T+H T<~'<T+H

< (H + |Al +1)log® T + log® T,

where we used that w(u) > 0 to extend the first sum and applied parts (b) and (c) of Lemma
5.12, respectively. This yields Y3 « 4(H + |A| 4+ 1)log®T. Yy can be treated similarly to
Y3, since we may interchange v and ~/, use that w(u) is even, and replace A with —A.

Combining the above estimates, we obtain that

(5.3.2)

Fa(o,T 4+ H) = Fa(a,T) + O <(|a| + 1)(H + |A] + 1) log? T) |

T
uniformly for a e R, T > 4,0 < H <T,and Ae Rwith 0 < |A| < T.

We now use the pointwise estimate ([5.3.2)) to prove part (a) as follows. It is known that

B
J F(a,T)da < 1+ 8, (5.3.3)
0
uniformly for 5 > 0 and T > 4 (see [53, Lemma A]). Integrating by parts, for 5 > 1 this
© Fla,T 1
J (o, T) da « —.
3 B

a?

implies that

Therefore, by the case A = 0 of the estimate , we obtain

a0
f F(a,T2+H do = FaT2+H) da+0<1>
1 (6 T
F 3
+O<(H+1)log T)

T

3

_f F(a;T) da+O<(H+1)IOg T>.

1 « T

This proves part (a). Part (b) is similar, using that |A| < log? T and Lemma in place
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of (5.3.3). O

5.3.2 Unbounded discontinuities

In this section, our goal is to express R; as a sum over pairs of zeros of ((s) in order to
apply Montgomery’s pair correlation method to estimate R;. The arguments of Montgomery
and Goldston consist of localizing the sum to zeros in the interval [0, T'] and then extending
the integral in the definition of R; in to infinity, up to small errors. However, due to
the unbounded discontinuity of our weight function h at the origin, their arguments do not
apply directly. This leads to difficulties, and we must use a different and delicate approach
to control the error terms in this case. The first part of this approach lies in the introduction
of a sequence of T},’s for which the following lemmas will hold. The idea of using such a
sequence is classical (for instance, see [41, Ch.17]). Since N(T + 1) — N(T') « logT', by the

pigeonhole principle, for every n € N we can find a sequence {T},} satisfying

1
<T<n+1 and |y— T|>> og (5.3.4)

In this way, we obtain similar results to Goldston on a sequence of points tending to infinity,

despite the unbounded discontinuity of our function h. Now, we define

k(§) == zh(é) (5.3.5)

s

and we consider the following lemma.

Lemma 5.14. Assume RH. Let T € {T,,}, where T, satisfies (5.3.4). Define k as in ([5.3.5)
and R; as in (5.2.8). For4<z <T and 0 < A <« T®, with 0 < b < 3, we have

71'2

(a) Ry = Z E[(y — ') logz] + O(\/Tlog2 T) ;

0<v,v'<T

B 92 ~ ) R , loglogT
(b) Ry = log z 0<727’<T{k[(7 ) loga] —k [(7 T A) IOgi]} " O<T\/; |

Proof of part (a). First note that for v # t, using an argument of Goldston [53| p. 158], we
find that

log

Z h[(t —v)logx] = Z h[(t —~)logz] + O(log T), (5.3.6)
=< fog

since h(v) <« 1%2 for |[v| > 1. Here, 7 = |t| + 2. Similarly, modifying an argument of
Montgomery [81, p. 187], we deduce that for ¢ € [0, T] we have

Z h[(t —v)logx] = Zh [(t—~ logx]—i—O([T Hl—i—tﬂ]logT), (5.3.7)

24 I
210,71 e
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where I = {y: T <~y < T+ 1ng} We now show that the terms in the sum for which
v ¢ [0,T] contribute an amount of size o(T") to R;. Using (5 and ([5.3.7)), we restrict
the interval of zeros within the sum in R; to 7,7’ € [0,7]. Then by expanding the integral,

we rewrite Ry as

T
Ri=), | h[(t—~)logz]h[(t—~)loga] dt
O<'y'y’<T1
+O(J2]h [(t—" logaz\ Z ]h [(t—" 10gaf]dt>
1ot I
ogx
r T (5.3.8)
+ O(fz |h[(t — ) log z]| log T dt> + O<long e t+1] log 7 dt)
1'yeI /

T
+0<1ogTﬂT t+1+t+1] > |h [(t— ’)10gx]|dt>,
1

[t— I\logx

where I = {v: T <~y < T+

of - gives

1Ogm} Integrating the third error term on the right-hand side

T
log TJ[T_ltH + t%l]logt dt « log3 T.
1

Using the facts that h € L' and |I| < 1, the second error term on the right-hand side of

(5.3.8]) reduces to

log?T
JZ‘h [(t— )logxﬂlogt dt « logTZ f ’h [(t—" loga:‘dt &

logz
1’YEI ’YEI 0 g

Similarly, the fourth error term on the right-hand side of (5.3.8)) yields

T
logTJ [T%m + H%] Z |h[(t —+")log z]| dt
! =< Tog 7
T T
J h[(t — )logx]fdt—i—logTJtJr1 Z \h[(t =) log z]| dt
! ‘t 7|\logx 1 It—v’KlOéx

=51 + 5.
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We introduce a parameter 1 < H < T to split the range of integration for Sy, as follows:

T—H T
_ / .
Sl—long 1 Z ’h [(t —+")log z]| dt + log f 1 Z ’h [(t —~")log ]| dt
[t—'|< 1ng lt—'I< log:c
= S11 + Si2.

To estimate S11, we note that T —t + 1 > H + 1, extend the sum over 7/ and use that
h e L'. We find that

T—
logT
Sn < > f h[(t — ") log z]| dt
H+1, 5 )
Tlog?T
H+1"

For S92, we use that T'—t + 1 > 1 and extend the sum slightly to obtain

T
Sio « logT > f Ih[(t —+) logz]| dt
(T-H-1)<v'<(T+1) 72 g

« Hlog?T.

To balance these two error terms, we choose H = v/T. Therefore, we conclude that

Sy « VTlog?T.

We estimate S» similarly, by splitting the range of integration from 1 to H and from H
to T. We again find that

Sy « VTlog?T.

By combining the estimates for S7 and SS9, the fourth error term on the right-hand side of

(5.3.8) can be estimated as

logT T L+ t+1] Z |h[(t —+")log z]| dt « VT log?T. (5.3.9)

1
At
lt=y |<logx

)—‘%H

For the first error term of ([5.3.8)), we again split the range of integration and find that

JZ‘h [(t—~ logx Z ‘h [(t— ’)logx]‘dt

vyel
[t—~ |\10gx
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T—1
= j Z’ ) log z]| 2 ’h [(t— ')logw]’dt
1

7el |t—' |\loga:
f Z‘h [(t—~ logx Z ‘h [(t— ’)logw]‘dt
=17 lt—y ‘\logx
=21 + Xo.
For v € I and t € [1,T — 1], we know h[(t — v)logz] « m. Since h € L', by an

argument similar to the proof of (5.3.7), we see

¥« f Z i Z ‘h[(t_,y/)log:c]‘ dt

2log x
FYEI lt=y |\loé:r
T—1
1 1
3 f [T P + t+1]logT Z \h[(t —+")logz]| dt
1 |t—7,|<loé:v
« \/Tlog2 T,

where we used (5.3.9) in the last line. Since T' € {T},}, we know that |y — T'| » long. Thus
fortel,wehavethat T — 1 <t<Tand T <y <T+ 10}” imply [t —~| » e T Since

|I] <1 and = > 4, again using that h(u) « u? for all u > 0, we know that

S p[(t — ) loga]| « Y ‘h (}gg;z)‘ «log? T 1 « 1og*T.
el vel ~el

Hence, since 7/ is contained in an interval of size less than 1, it follows that

T
Yo « log3 T f 2 \h[(t —+")log z]| dt
T-1 [t—'|<

1
log T

log® T
h(u)| d
< logm Z J| )| du

/|<2 _»

. log T
log

for all T € {T,,}. Hence combining our estimates for ¥; and 3o gives

JZ‘h [(t—~ log:c” Z \h[(t =) logz]| dt = 1 + Zp « VT log?T.

vel Ne L
1 lt—y |$logx

Therefore, Ry is confined to ,+' € [0,7] with an added error of O(v/Tlog?T). Similarly,
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we may extend the integral range of [1,7T] to (—o0,0) with the same error. Thus,

Ry = Z J h[(t — ~)logz] h[(t — ) logz] dt + O(VT log?T).

O0<y,y'<T

We now use the properties of h(v) expressed in Lemma to simplify our expression
for Ry. Since h € L! and it is even, we can use the substitution u = (t —4/) log x together

with convolution to find that

0

1
1= Z J h(a —u) h(u)du + O(VTlog? T)
08 ¥ 0<vy,Y'<T *
1
=1 Z h* h(a) + O(VTlog?T),
08 0<v,y'<T

with a = (y—+') log . Since h € L', we know that convolution is well-defined and hsh=h2
Furthermore, from Lemma we know that h € L2, and therefore k(&) = ﬂ%/ﬁ(g)z e L.
Thus by Lemma (5.3.5), and the properties of Fourier Transform, we have

7T2

Ry

> kl(y =) logz] + O(VTlog?T),

B log x
& 0<y,y'<T

as claimed.

Proof of part (b). The proof here is similar, but we highlight some important differences.
Recall that

T
Ry = f[B(t +A)— B dt,
0

where we defined B(t) in (5.2.7)). First, by Lemma and part (a) of Lemma since
A « TP with b < %, we have that

T+A T 1 1 T
B2 dt = | B(#)? dt T, | 28081 )
| Bz a- 5o +0<4/ e
1+A 1
log log T
By — Ry — 27 + 0<T, /Ogog) |
logT

T

Ras = f SYB[(t + A — ) logalh[(t — o) log ] dt. (5.3.10)
o Y

As in part (a), we restrict the double sum in (5.3.10) to the interval [0,7"] and then extend

Therefore, we find that

where
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the integral to R, up to an error term o(7"). For this purpose, note that

Z h[(t+ A —~)logz] = Z h(t+ A — 'y)log:c]—i—O([T t+1+t+1]logT),

Y el
¥#[0,T] A

where In = {v: T <y <T+ A+ 55 L1, Note that [Ia] « (A + 1)logT. By computations
similar to those of part (a), we find that

T
2
Rao = Z Jh[(t + A — ) logz] h[(t —~")logx] dt —s—O(W) —FO(\/Tlog2 T)
O0<y,y'<Ty ogx
T
+0 DUR[(t+ A —y)logz] > A[(t—+)logz]| dt |. (5.3.11)
et =<z

The next step is different from the steps in the proof of part (a). To bound the last error
term in (5.3.11)), we will use the Cauchy-Schwarz inequality:

h[(t + A —v)logz] Zh [(t —~+)logz]| dt

’_‘%ﬂ

Tela lt—y |\loga:
Z h[(t + A —v)logx] Z h[(t —~')log z]
vela 2 t— /|< 1 2
log
= Jp - Js. (5.3.12)

To estimate J;, we expand the integral, apply Cauchy-Schwarz once more, and use that
he L? and |In| « (A + 1)logT. This gives

2 J [(t+ A —7)logz]h((t + A —+')logz) dt
’77’761A0

2
< (A +1)%log T.

5.3.13
log ( )

To estimate Ja, we use (5.3.6]) to extend the sum over zeros to the interval [0, 7'+ 1], together
with the bound N(T + 1) « T'log T and the fact that h € L'. This yields

T
J3 = Z J hl(t — ) log z]h[(t — ') log z] dt + O(T log®T)
0<v,7'<T+1%1

=Ry +O(Tlog?T)
« Tlog?T, (5.3.14)
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where we used part (a) and part (a) of Lemmal[5.16] Combining (5.3.11), (5.3.12)), (5.3.13),
and ([5.3.14]), we obtain

T

Rog = Z h[(t + A —~)logz] h[(t —+)logz] dt + O((A + 1)VT log? T>.
0<yy'<T 1

Similarly, the integral above may be extended to R up to the same error term. The rest of

the proof is analogous to part (a). O

5.3.3 A modified pair correlation approach

The next step is to introduce the weight function w(u), from (1.3.5), to write R; and
R3 in Lemma in terms of Montgomery’s function F'(«) and Chan’s function Fa(«).

Lemma 5.15. Let T € {T,,}, where T), satisfies (5.3.4). Define k as in (5.3.5), and assume
RH. For4 <z <T, and 0 < A < T, we have error terms

72 ~ Tlog?>T
(a) Ry = ] Z k[(y —~")log z]w(y —+") + 0(13) :
08T 0<v,y'<T o8
272 ~ , "o~ , )
(b) Ra = > {k[(v—v)logx]w(v—v)—k[(v—v — A)logz]w(y -5 —A)}

Tlog?T
+ O(o% ) .
log® z
Proof. The proofs of the expressions in parts (a) and (b) are proved using similar methods,
but the proof of part (b) is more involved. For this reason, we only work out part (b).

Recall that k is the function defined in (5.3.5). We have that @(y) « min(1, y%) From this
estimate we introduce the weight function w(u), defined in ([1.3.5)), into the sum over zeros

> E[(y—+")loga]

O0<y,y'<T

using the following argument. We consider the difference
D := %[(’y — - A) logx] — @[(’y — v - A) logx]w<'y — - A).

Using the facts that N(7') « T'log T, there are O(logt) zeros in any given interval [¢,¢ + 1],
and that A < T, we have

1 1
D «
log? Z Z4+(’Y—’Y'—A)2

L o<y<T A
1 Tlog?T
< — 2 log(v' + A) « %.
log= x 0T log“
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Therefore,

Z @[(’y—fy’—A) loga:] = Z k [(7 —v = A) logac] fw(’y—’yl—A) +0 <T10%2T> )

0<y,y'<T 0<y,Y'<T log™x

Similarly, we may introduce the weight w(u) into the the other terms in the representations
of Ry and Ry in Lemma to complete the proof. O

Using Lemma and the properties of F(a) and Fa(a), we take z = T% and proceed to

estimate R;.

Lemma 5.16 (Estimates of R;). Assume RH. Let T € {T,,}, where T,, satisfies (5.3.4)). Fizx
0< B <1, let g be defined in (5.2.2)), and define R; as in (5.2.8). For T >4, x = T?, and
0 <A =o(logT), we have

0 1
2

g JFO(; da+fvg ) dv —1—92(2)2 —log B ¢ + o(T).

1 0

1
=T f@g w(A) cos(AvBlogT)] dv — log(B)

0

AlogT 0
ABlogT 1

where the error term on part (a) is of size O(T loig)%T), and the error term on part (b)

is of size O(

\/W) + O<log T)

Proof. Let T € {T},}, fix 0 < 8 < 1, and choose z = T for T > 4.
Part (a). Recall the definition of the function F'(a) and w(w) in (1.3.5). Then using the

definition of Fourier transform, we manipulate the sum over zeros in the representation
formula for R; in Lemma to yield

o0
M E[(y =) logzlw(y —7) = f k(u) Y. e 2mm)lesmy(y — o) du
0<v,y'<T o 0<v,y'<T
ee}
TlogT «
_ 082 2 \r . 3.1
)5 <2ﬂﬁ) (@) da (5.3.15)
—00

Then, inputting (5.3.15|) into part (a) of Lemma gives

2

s ~ T
Ry = > El(y =) logalw(y —+') + O
log Ty i (logT>
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B <2:g>2 J+

—0

()i o( L) oa10

Recall from (5.3.5) that k(u) is piecewise defined with a transition at u = 5=. Thus, we use

(5.1.8)) and the fact that F'(«)) and k(u) are both even and non-negative functions to rewrite

the above integral over k£ and F' as

o B
f b(og)Fle) da = 2Jk<2:ﬁ> o+ o(1) + T2 log T(1 + o(1))] da

0
1
=
B

9 e} 2

For the second integral on the right-hand side in (5.3.17)), because 3 is fixed, we know that

2
2 <§> o+ 0(1) + T 10g T(1 + o(1)] da = —28%log B+ 0(1).  (5.3.18)

To compute the first integral on the right-hand side of (5.3.17), we use the facts that
k(ﬁ) = g° <%) for 0 < a < 3, that 0 < 8 < 1 is fixed, and that k£ is smooth near the

origin and uniformly bounded. By technical yet straightforward manipulations, we find that

1

B
QJk(Q:ﬁ)[a +o(1)+T2*logT(1 + o(1))] dev = QBQJU g*(v) dv + ¢*(0) 4 o(1). (5.3.19)
0 0

Combining the estimates (5.3.18]) and (5.3.19)) yields

0 1 0
J k(%)F(a} da = 252 fvg2(v) dv—2/2log +¢2(0)+25> f Fcig) da+o(1). (5.3.20)
—0 0 1

Inputting (5.3.20)) into the representation for Ry in (5.3.16)) concludes the proof of part (a).

Part (b). We consider the definition of the function Fa(a) in (5.1.4). Then using the
definition of Fourier transform, we manipulate the sum over zeros in the representation
formula for Ry in Lemma to yield

Z l%((v—*y'—A) logx)w(v—yl—A)

0<vY'<T
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0

= J k(u) Z T2 B =)y (y — 4/ — A) du

% 0<y,Y'<T

= 12;17(:;({2,]6: k(i)FA(a) do. (5.3.21)

278

Then, inputting (5.3.15)) and (5.3.21) into part (b) of Lemma gives

0 0
T « « T
= — kl— |F(a)da— | k{=—)F d .
Re=55 f (27r5> () da f (27r5> a(a) dare + O(logT>
—Q0 —Q0
By splitting the second integral above using the symmetry relations for Fa in (5.1.9)), we
have
T T T T
o e
- — | F =—— F F .
o [z i = i) s
—0 0

Next, we divide the integral over the intervals (0, ), (8, 1), and (1, o), and apply (5.1.10]).
Consequently, since k(u) is even, k(0) = ¢2(0), and T4 + T~A = 2cos(AalogT), we

obtain

B 1
T « Tg?
sz (52 Est) - afenlda =~ T4 - Tu(a) gt con(dusiog ) v+ of),
0 0
and
1 AlogT
T o Ccos U
o [ B Fa(@) + Foa()) da = ~Tw(a) [ ©2% du o).
B ABlogT
By combining the above integrals, we have that
T [ 1
o
~552 5-7)F =-T (AvBlogT
257 Jk<27rﬂ> Ala) da 2ﬁ2 ng cos(AvfBlogT) dv
—0o0 0
AlogT 0
1[F F_
+w(A) O qu + 2J ala) —;2 ala) da p +o(T).
ABlogT 1

(5.3.22)
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From the proof of part (a) (see (5.3.20))), we know that

0

T f
232

—a0

By adding (5.3.22)) and ([5.3.23|) together, our asymptotic formula for Ry reduces to

1
Ry =T jvg2 (v) (1 —w(A)cos(AvBlogT)) dv — log 3
0

da | +o(T).

1 0
- Fa)da=T| |vg*(v) dv—logp g°(0) Fle)
(%5) OJ g gp+ +1f

232 a?

(5.3.23)

AlogT o0
1 (2F(a) — F —F_
—w(A) J SO du + f () A<(21) ala) doa | +o(T),
U 2 o
ABlogT 1
which completes the proof. O

5.4 Contributions from the primes

In this section, we estimate the expressions G; + H;. First, we obtain intermediate

expressions for G; and H; separately.

5.4.1 Expressions for G; and H;

We begin with a useful Lemma that helps estimate the second moment of some trigono-

metric polynomials.

Lemma 5.17. Let T > 0, and let {an}n>1 and {h,}n>1 be sequences of real numbers such
that
> (nlan|? + |an]) < 0. Denote

n=1
C = Z |an| Z [@2m] + i nlan|?.
logm =

2
0
T
Z an cos(tlogn)| dt =T a3 + 3 Z a2 +0(C)

n=1 n=2

n=1 n=2
© 2
Z an [ cos((t + hy)logn)—cos(tlogn)]| dt =T Z a2 [1—cos(hy, logn)] + O(C)

n=1 n=2

T
|
T -
(b)f Z an sin(tlogn)| dt = 3 Z a2 +0(C)
7
©|
0
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2
o0
Z [sin((t + hp)logn)—sin(tlogn)]| dt =T Z a2 [1—cos(hylogn)] + O(C).

n=1 n=2

C’%ﬂ

The implied constants are universal.

Proof. A classical result of Montgomery and Vaughan [83, Corollary 3] states that, for
complex numbers (by,),>1, we have

|

2 e}
dt = > |bal* (T + O(n)). (5.4.1)

n=1

o0
Z b, n" %

n=1

For part (a), let z := >°_; a, n~ ", and note that Rez = Y., a,, cos(tlogn). Consider the

n=1
identity
2
(Rez)? = 12 +;Re( ) (5.4.2)

By (5.4.1)), we have

T

|2 1 2
0 n=1

We write z = a1 + Y5 a,n~ " and use that, for n > 2, we have {n="dt = in~"/logn.

This yields
[ i |an| ||
z a a ana
Za=Yrio 1l ) L o 1@n@m|
f 2 2 * (’al‘;Z logn> * < Z log(mn))

n,m=2

2 [e9)
ap 2
:2T+O<C+ > njan| ) (5.4.4)

n=1

Here, we used the Cauchy-Schwarz inequality to obtain

|ar| Z |an| n]an|2 « n|an|2.
1 n>2nlog n n=2 n= 1

Combining (j5.4.2 -, and (| -, we obtain part (a). Part (b) is analogous, using the
identity

2> — Re (2%)
2
in place of (5.4.2)). Note that, since sin0 = 0, part (a) has an extra contribution from the

term a1 that is not present in part (b). For parts (c) and (d), we use the identities

(Im 2)% =

cos((t + hy)logn) — cos(tlogn) = Re [n~%(n~H —1)],
sin((t + hy)logn) —sin(tlogn) = —Im [n~%(n=" — 1)]
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and
[n=n — 1% = 2(1 — cos(hy, logn)).

Then, we apply the same argument above with z = > a,(n~"" — 1) n~%, using Mont-
gomery and Vaughan’s result (5.4.1) with b, = a,(n~"» —1). O

Using the previous lemma, we obtain the following expressions for Gj;.

Lemma 5.18 (G;). Let A >0 and 4 < x <T. Let G1 and Go be defined in (5.2.8). Then,

T A(n)? 5 (logn x
(2) Gl__onloanf log z +0 log =

n<x
A(n)? 5 (logn x
=-T 1-— Al .
)G =T 3 s (o) L eos (om0 o

Next, with the goal of studying H; and Hs, we use some estimates of Goldston, together
with some trigonometric identities, to obtain expressions for the real and imaginary parts
of integrals involving log ((1/2 + it) times trigonometric functions. Some of these results
appear previously in [53] (part (b)) and implicitly in [46] (part (d)). We collect them all in

the following lemma, for the reader’s convenience.

Lemma 5.19. Assume RH. Let T > 1, let h € R, and let n = 2 be an integer. Denote

n'/2log T

E=E, T):=n"?loglog3n +
logn

Then, the following estimates hold:

T

(a) Jlog |C(% +it)| cos(tlogn) dt = g A(n)

n/2logn

+O0(€)

(b) | #S(t) sin(tlogn) dt = —ang(lz)gn +O(€)

(c) | log [¢(5 + it)| [cos((t + h) logn) + cos((t — h)logn) — 2 cos(tlogn)] dt

H%,ﬂ —C N —

A(n)[1 — cos(hlogn)] N

=-T W log o)
T
(d) Jﬂ'S(t) [sin((t + h)logn) + sin((t — h)logn) — 2sin(tlogn)]| dt
1
_7 A(n)[1 — cos(hlogn)] L o(E)

nt/2logn
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Proof. Assuming RH, Goldston [53] p. 169], improving upon a contour argument of Titch-
marsh [I01], showed that

T
T A(n) n'/?log T
it _ 1/2
JlogC( +at)n' dt = " logn + O(n'/*loglog 3n) + O(logn (5.4.5)
0
and
T
Jlog (3 +it)yn™™ dt « logT. (5.4.6)
0

Adding (5.4.5) and (5.4.6) and taking real parts yields part (a). Part (b) is [53, Equation
(6.3)]. Parts (c¢) and (d) follow from parts (a) and (b) after applying the trigonometric

identities

cos((t + h)logn) + cos((t — h)logn) — 2 cos(tlogn) = —2cos(tlogn)[1 — cos(hlogn)],
and

sin((t + h)logn) + sin((t — h)logn) — 2sin(tlogn) = —2sin(tlogn)[1 — cos(hlogn)].

This completes the proof of the lemma. O

We now obtain expressions for H; from the above. As mentioned in the introduction,
in the next lemma we will use Theorem to control some of the error terms in part (b),
which is the part of the lemma that is relevant to Theorem [5.3]

Lemma 5.20 (H;). Assume RH. Let 0 < A < T° with 0 <b <1, and 4 < x < T. Let H;
and Hy be defined in (5.2.8)). Then,

1 log 1 logT
TZ (ogn>+0<a} og Og2l’ og )
nlog n” \logz log® x

n<e
logn mloglogmlogT) ( T )
9 =2T 1-— Al +0| —=———|4+0 | — ).
3 gt (g ) 1 - comt@toam) + 025282 Vors

Proof. Part (a) follows from part (a) of Lemma and the definition of H;. For part (b),

we rearrange the terms and use a change of variables to find that

T
Hy - flog C(L + it) | [A(t + A) + A(t — A) — 24(8)] dt
1

1+A

j g [C( + it)]| |A(t) — At — A)] dt
1
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T+A
+0 f g C(L + )] |A(t) — At — A)] dt
T

By Theorem with 0 < A < T?, we have
T+A
| tog?i¢h + i)t = o). (5.47)
T

Note that we used Lemma[5.13]to show that the contribution from the constant a in Theorem
is o(T) over the interval [T,T + A]. By Montgomery and Vaughan’s result in (5.4.1)),

we also have

T+A
f JA(t) — At — A)? dt « Z M) (A +n) « Aloglogz + - (5.4.8)
= nlog®n logz’ o
5 <
We use the Cauchy-Schwarz inequality, (5.4.7]), and (5.4.8) to obtain

T+A

f log [c(L + it)|[ [A(t) — A(t — A)| dt « /AT logloga + 4| > « —L—

2 logz  +/logx
T

since we have 4 < 2 < T and 0 < A < T°. The first error term may be treated similarly.
This yields

T
Hy - _2jlog\c<; +it)| [A(t+ A) + At = A) = 24(1)] dt + 0(«%) |

1

The conclusion now follows from part (¢) of Lemma and the definition of A(t) in
EZD. 0

5.4.2 Estimating G; + H;

Starting from the previous results, we proceed to estimate G; + H; asymptotically, tak-
ing advantage of some cancellations between their sums via the function g (introduced in
(5.2.2)). In this section, we will diverge from the strategies of previous work of Fujii to

obtain more precise input from the primes, which is necessary for Theorem

Lemma 5.21 (Asymptotic estimate of H; + G;). Assume RH. Let T > 4, and let 0 < A =
o(log?T). Fiz 0 < B <1, and choose x = T?. Define the function c(v) as in (5.1.7). Then,

as T — o0, we have

T = 1 /1 1 0
(a) HH + G = — loglogT+70+Z Z* — = = +logﬁ—jag(oz)2 da
2 mapse P AMS o m 5
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N O<TloglogT>

logT
ABlogT 1
1 — Cosu
(b) Ho+ Gy =T J Ja [1 —cos(ABlog Ta)]g*(a) day +o(T),
U
0 0

where the error term o(T') in part (b) is actually
T TA
O —= ) +0| —= -
<\/10gT> <log2 T)

Proof. We split the proof in the following subsections.

Part (a)

We add Lemma and Lemma and use that, by Lemma u?g(u)? = (1—f(u))2
This yields

G+ Hy = - 3 M) T 3 Az(mg?(log”> +0<T1°g1°gT> . (5.4.9)

2 nlog®n 2log’x = log x log T

n<T

For the first term, we separate the primes from the prime powers and use Merten’s Theorem,

Z = loglogx + v — Z Z <10;’B>.

p<x m= 2p>2

which states

Therefore, we see that

D A () loglog:c+’yo+22 <—;L)+

n<znlog n m= 2p>2p

o(L). e

For the second term, unconditionally, note that the prime number theorem with error term

implies that

’I’L2 O 2
P(y) =] A(n) ! g2 Y+ o).

n<y

Then, using summation by parts and integration by parts, we obtain

1

Z A*(n) (logn> log? xfag ) da + O(logz) . (5.4.11)

= n log = )

By inserting (5.4.10) and (5.4.11)) into ([5.4.9)), we obtain part (a).

132



Part (b): Summing by parts

Similarly, we have

A*(n)
Go + Hy =T [1 — cos(Alogn)]
gw nlog®n
T A%(n) ,(logn T'loglogT
— 1- Al —_— . 4.12
log? z Z n 7 <10g:r> [1 = cos(Alogn)] +O< logT > (5 )

n<e

Using summation by parts, integration by parts, and the prime number theorem with error

term, we obtain

2(n ogn n)logn ogn
Z A% )92<1 & >[1—cos(Alogn)] = Z A(n)log 92<1 & >[1—cos(A10gn)]+O(1)

= n log = = n log

1
= log? xfa [1 - cos(ABlogTa)] g?(a) da+OA+1).
0
(5.4.13)

To estimate the first term on the right-hand side of (5.4.12), consider the quantity

M(y) == Y, A*(n) = ylogy —y + E(y),

n<y

log™ y
we let 1 < £ < 2 be a parameter. We anticipate that we will eventually take £ — 1*. Then,

the sum in the first term of ((5.4.12)) is

so that dM(y) = logy dy + dE(y) and E(y) = ON< . ) is defined in (5.1.6]). For this,

zt

2(n —cos(Alo
Z An) [1 —cos(Alogn)] = J ! (Alogy) dM (y)

némnloan legzy
xt xt
_ f l—cos(Alogy)d N J 1—cos(A210gy) dE().
ylogy ylog™y

We use the change of variables u = Alogy in the first integral. For the second integral, we
integrate by parts and use that E(¢) = ¢ — £log ¢ to find that

T Z A% (n) [1— cos(Alogn)]

nlog®n
Alogx
1 —cosu logl—1
= ——du+ (1 — Alogl)) | —=——
{ J » u+ ( cos(Alog ))( log { )
Alog?

n<x

E
n J(y:)))[—Alogysin(Alog y) + (1 — cos(Alogy))(logy + 2)] dy
y?*log”y
0
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+ O(M> . (5.4.14)

10gN+1 T

Here, we used that E(y) <y

oz 5 (for any N > 0) to extend the last integral to infinity,

up to an error term. Now, we let £ — 17. Note that

log ¢ — 1> _ _A72

%EO —cos(Alogt)) ( log? ¢ 5

Additionally, since F(y) = y—ylogy for all 1 <y < 2, the second integrand above satisfies,
in this range,
E(y) A?

/2 10g3y[—Alogysin(Alog y) + (1 — cos(Alogy))(logy + 2)] = -t O(A%*(y —1)).

This shows that the second integral is absolutely convergent on (1,00). Therefore, recalling
that = 7% and A « log? T, we may let £ — 17 in (5.4.14) to find that

ABlogT

A?(n) 1—cosu T
TZ nlog2n[1—cos(Alogn)]—T J Tdu—kc(A) +O<logT>’

n<x
= 0

(5.4.15)

where ¢(v) is defined in (5.1.7). By combining (5.4.12)), (5.4.13), and (5.4.15]), we complete
the proof of Lemma We remark that the restriction A = o(log? T') comes from the

sum over primes in equation (5.4.13)). O

5.5 Proofs of main theorems

We now explain how Theorems and [5.4] follow from the combination of our

previous lemmas.

5.5.1 Proof of Theorem [5.1]

For all T € {T,}, the proof of Theorem follows from inputting part (a) of Lemmas
and into the representation formula for log |¢(3 + it)|, which we proved in part (a)
of Lemma Some of the integrals in these results are over the interval [1, 7], but these

can easily be extended to [0,T] since

1

Jlog2 (b + i) dt « 1.
0

In particular, Theorem holds for all T' € {T},} such that T" > 4. We now extend this
result to hold for all T' > 4.
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Assume T;, < T < T, 4. Since the integrand in Theorem [5.1]is positive, we know that

Tn T Tn+1
J 1063+ )] at < |10 (b it)] de< | tog? o4+ it)| a
0 0 0

Moreover, because both T;, and T,,,1 are at most 1 away from 7" and Theorem holds for
T, and T,1, by part (a) of Lemma it follows that

T
jlog2 ¢ (5 +it)| dt = gloglogT +aT + o(T),
0

which completes the proof of Theorem [5.1] for all 7' > 4.

5.5.2 Proof of Theorems [5.3] and [5.4]

For the proof of Theorem when we input part (b) of Lemmas and into
part (b) of Lemma we get

[log |C(% + it +iA)| — log |C(% + it)|]2 dt

me—_—

ABlogT AlogT
1—
=T J ﬂdufw(A) f Cosuduflogﬁ
u u
0 ABlogT

1
+ Jv g* (v) cos(AvBlog T) (1 — w(A)) dv
0

2F () — Fa(a) — F_a(a)
o2

+e(A) + ;f da b + o(T). (5.5.1)
1

Because our results hold independently of our choice of 3, there should be no 8 dependence
in our final result. First, note that, by analyzing separately the cases A « 1 and A » 1 and

using the definition of w(u), we have

1wy 1
AlogT logT’

uniformly for A > 0. We use this fact and combine the first three terms on the right-hand

side of (5.5.1)) to yield

AplogT AlogT
1—
J ﬂdufw(A) J Cosuduflogﬂ
U U
0 ABlogT
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AlogT AlogT

_ J L2 COSU G~ (w(A) — 1) J COST

u u
0 ABlogT
1
1— Aal
:J cos(AalogT) da+ 0 1 ’
Q logT

where we used integration by parts in the last line. Next we consider the integral involving

g%(v) on the right-hand side of (5.5.1)). Using integration by parts, we similarly see that

1
fv g° (v) cos(AvBlogT) (1 —w(A)) dv « g T
0

Combining these simplified expressions together gives

[log’{( +zt+zA)}—log’C( +zt)H dt

me—_—

=T

da+J2F — Fale) = Foafa) da p + T c(A) + o(T).

1

J 1 — cos(AalogT) 1
o2

0

1

We then extend the range of integration to [0,7T] since, by Theorem and the Cauchy-

Schwarz inequality, we have
1
j log K + it +iA)| — log |C( + zt)”2 dt <« (1 + A)loglog(3 + A).
0

This completes the proof of Theorem for T € {T,}. Since the integrand is non-negative,

this result can be extended to all T' > 4 using the same argument as in the proof of Theorem

along with part (b) of Lemma Finally, to prove Theorem recall that ([5.4.15))
implies that

1
[1—cos(Alogn)] =T f 1= cosfulogT du + c(A) p + O<10§T> ,

Ty

n<Tnlog n

where ¢(v) is defined in ((5.1.7). Therefore, Theorem is equivalent to Theorem

5.5.3 Proof of Theorem [5.2]

To prove Theorem[5.2] we need to express the sum over primes in terms of the logarithmic

derivative of ((s) near s = 1.
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Lemma 5.22. Assume RH. Let x > 2 and u € iR with 0 < |u| < y/z. Then,

¢ Aln) o™ log”
_Z(1+U):Z 1fu+xu +O<O\g/;>,

n<r

where the implied constant is universal.

Proof. This can be established using classical arguments in a similar manner to the proof

of the Prime Number Theorem (assuming RH), e.g. [84, Chapter 13]. O
Clearly,
A(n)? ~ A(n) ( 1 >
1 —cos(Al =C(A) + 1— Al +0| =],
X gty (1~ cos(logm) =€)+ 3] A (1 - cos(Bogn) + O 7
(5.5.2)
where C(v) is defined in (5.1.5). Also, note that
i A AN
— cos(Alogn) _ 1 J”u R
logn 2
0
Therefore, Lemma [5.22] yields
Aw) [ 5 A0 5 AW
n n n
1 — cos(Al . - d
nnglogn( cos(Alogn)) ) NZ:T nl-u ngT pitu 4
" ¢ ¢ T T Alog?T
— 2w -2 +uw) - — " d =0 7).
Ofg( W)= () - — u+0< . )
(5.5.3)

Theorem |5.2| now follows from Theorem (5.5.2), (5.5.3) and a change of variables.

5.6 Transition between ranges

In this section, we prove Corollary [5.7)in both ranges. We begin by showing how Theorem
reduces to Fujii’s theorem when A = o(1).

Proposition 5.23. Assume RH. Let T > 4 and A = O(1). Then

1 [ 2F(a) — Fa(a) — F_a()
2J da

a2

F(a)[1 - cos(AalogT)]

a2

da +O(A),

1

as T — 0.
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Proof. Consider the identity

2F(a)—Fa(a) — F_a(«)
2

8 2
u du  (5.6.1)

T TlogT

Z Tia7627riu*y

o0
f e U1 — cos(Aalog T + 27 Au)]
0<y<T

—00

> 0.
By the mean value theorem, cos(AalogT + 2rAu) = cos(AalogT) + O(Alul). We also
have the identity

2
du = 0.

Z Tia'ye%riwy
0<y<T

472

s

F —A47|u|
(@) TlogT Je

—00

Therefore, we obtain

2F () — Fa(a) — Foa(a) =F(a) [1 — cos(Aalog T)]
+O0O( A J e~ 47l |y

—00

2
Z Tzoc'yeQmwy du

0<y<T

The rest of the proof consists of controlling this last error term. This requires a technical
but straightforward modification of Montgomery’s arguments and definitions in [81], which
we define and prove in Appendix B. In particular, we define ﬁ’go(a) in , which is a
modification of F(«) by using a slightly different weight. Using the estimate |u| « e*7luls
for € > 0 and the identity for F}O(a), we find that

2F(a) — Fa(a) — Foa(a) = F(a) [1 — cos(Aalog T)] + O(Aﬁm(a)) :
where oy = 1 — ¢ (we may take any 0 < € < %) Now, Proposition implies that

ﬁao (@)

da « 1.
a? @

Hence the desired result now follows. O

Remark. By (5.6.1), we know that 2F(a) — Fa(a) — F_a(a) = 0. Modifying an argument
of Goldston [53, Lemma A] in a straightforward manner, it can be shown that, for A =

o(log?T), as T — o, we have

2F () — Fa(a) — F_a(a)
2

da « 1.
(6%

Proof of Corollary[5.7 Note that, by Proposition [5.23] since Theorem [5.3| reduces to Fujii’s
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theorem when A = o(1), part (a) follows from Fujii’s remarks |46, Section 3]. For part (b),
let A » 1. We want to show that

2n
2 A(Q) (1 = cos(Alogn)) + 1| + o(T).

nnglog n

T
2 f [S(t+A)— SO dt = T
0

To prove part (b) of Conjecture by Theorem it is enough to show that

2 da =1+ o0(1).

N

T?F(a) — Fa(a) — F_a(a)
1

By Conjecture 5.6, we have

0

TQF(@) — Fa() = Fae) | J 1 — cos (Aalog T)w (A)
1

da + o(1).

a? a?

|

1

Now note that

Then, integrating by parts, we find that

o]

cos(AalogT) w(A) B 1 B 1
J a? da=0 AlogT =0 logT )’

1

as we wanted. This completes the proof. O
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Chapter 6

Zeros of families of L-functions

This chapter is comprised of the paper [A5]. We study the g-analogue of the average
of Montgomery’s function F(a,T') (defined in (1.3.5))) over bounded intervals. Assuming
GRH, our goal is to obtain upper and lower bounds for this average over an interval that
are as close as possible to the pointwise conjectured value of 1. To compute our bounds, we
extend a Fourier analysis approach of Carneiro, Chandee, Chirre and Milinovich [16], and

apply computational methods of non-smooth programming.

6.1 Introduction

The pair correlation conjecture , and similarly, the behaviour of Montgomery’s
function F(«) in larger ranges of «, have since proved to be deep and difficult questions,
being related to important problems such as the behavior of primes in short intervals [5§].
Recall, as mentioned in Section that the pair correlation conjecture is equivalent to

the statement

1 b+¢
J F(a,T) da ~ 1,
€

as T — oo, for any fixed b > 1 and ¢ > 0, where F is defined in (1.3.5). For further
background on the pair correlation conjecture and its equivalences, see, for instance, [16],
and the references therein. For a gentle introduction to the pair correlation conjecture and

its relation to prime numbers, see the notes [55].

6.1.1 Bounds via Fourier optimization

Recently, Carneiro, Chandee, Chirre, and Milinovich [16] studied these averages of F'
over bounded intervals, by developing a general theoretical framework that relates them to
some extremal problems in Fourier analysis. This was inspired by some constructions of
Goldston [53] and Goldston and Gonek [56]. For example, let A; be the class of continuous,

even, and non-negative functions g € L'(R) such that supp § < [~1,1]. Consider the
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following extremal problemsﬂ
Extremal Problem 6.0.1 (EP1). Find

9(0) + 2§, @ g(a) da

CT:= in - = = .
geA1\{0} Ming<a<i |g(a) + (1 — )|

Extremal Problem 6.0.2 (EP2). Define the constant

o= min T — —0.2172336282. .. (6.1.1)
2eR\{0} T
Find
(1= 0)g(0) + o (5(0) + 2 [y a g(a) do)
C™ := sup =
geAs maxo<a<i ([g(e)] + [§(1 — a)|)

g(0)>0

As a consequence of their general framework, they obtain the following:

Theorem 6.1 (c.f. [I6l Theorem 1]). Assume RH, letb > 1, and let € > 0. For sufficiently
large fixed ¢ (possibly depending on b and €), as T — oo, we have

b+¢
C —ce+0(1) < éf F(a,T) da < CT + ¢ +0(1).
b

Additionally, they establish the bounds (see [16, Corollary 2] and the numerical examples
in p.18 and p.20)
0.927818 < C~ < C* < 1.330174, (6.1.2)

which give the respective numerical lower and upper bounds for the left-hand side of ((1.3.13)).

6.1.2 g-analogues: an average over Dirichlet L—functions

Montgomery [81] also suggested the investigation of the pair correlation of zeros of a
family of Dirichlet L—functions in the g-aspect. One wishes to study the distribution of
the low-lying zeros of L(s, ), on average over Dirichlet characters x (mod ¢), and over
Q < g < 2Q). By taking these averages, one can obtain improvements over what is known
for the Riemann zeta-function, and this provides heuristic evidence for the original case. In
[27,189], the authors obtained improvements over for these g-analogues, and used this
to obtain lower bounds for the average proportion of simple zeros of Dirichlet L-functions.
Later, in [17], the authors introduced the idea of relating the pair correlation of zeros of
((s), and its g-analogue, to some Hilbert spaces of entire functions. Sono [97] used this idea

to improve the aforementioned lower bounds on the proportion of simple zeros. These were

! In [I6], the authors work with a larger class of functions instead of A;. See Section for further
comments. Note that our class A; is called Ag in [I6]. We make this change of notation since, in Section

other classes Aa will naturally appear, where the support [—1, 1] is replaced by [—A, A] for a parameter
A.
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further improved in [30], by using a different class of functions and sophisticated numerical
optimization methods (see Section [6.3.1)).

To define these g-analogues, we must introduce some notation. We use the framework
established in [27], and follow the notation in [I7, Section 6]. Assume GRH for Dirichlet
L-functions (GRH). Let ® be a real-valued function with compact support in (a, b), where
0 < a < b. Denote by

09]

B(s) := J O(z)z* " da

0
its Mellin transform. Additionally, assume that ®(z~!) = ®(x) for all € R\{0}, that
®(it) = 0 for all t € R, and that |®(it)| « [¢|~2 as |t| — co. For instance, a possible choice
satisfying all conditions (see [I7]) is ® such that

Finally, let W be a smooth, non-negative function with compact support in (1, 2). We can

now define the g-analogue of N(T') as

Z (bq/Q 3 N (i) (6.1.3)

X (mod q) Vx

where the second sum (indicated by the superscript *) is over all primitive Dirichlet char-
acters (mod ¢), and the last sum is over all non-trivial zeros 1/2 + i, of L(s, x). Define

the g-analogue of F'(a,T) as

Fy(a) = Fp(a, Q) : ZW é)Q Z Z‘ m, QW’YX‘Q (6.1.4)

(mod q) 7x

Chandee, Lee, Liu and Radziwilt [27] proved an asymptotic formula for Fg(a) similar to
for |a| < 2, showing, in particular, that Fg(a) ~ 1 when 1 < |a| < 2 (see Lemma
below for a full statement). Moreover, they conjectured that Fg(a) ~ 1 for all |a| > 1
in analogy with Montgomery’s original conjecture for F'(«, 7). We may now state our main

result, which gives evidence for this conjecture.

Theorem 6.2. Assume GRH, and letb > 1. For sufficiently large fized { (possibly depending

onb), as QQ — o, we have
b+4
0.982144 + o( <37 J Fo(a,Q) da < 1.077542 + o(1).

We highlight that our upper and lower bounds are very close to the conjectured value
of 1. We also remark that while the size of £ in the lower bound may depend on b, the size
of £ in the upper bound is independent of b. A similar situation occurs in Theorem For

effective bounds that hold for any given b and ¢, see Section [6.2.1
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To prove Theorem [6.2] we develop a framework for estimating these integrals over
bounded intervals via Fourier analysis, extending that of [I6]. We take advantage of the new
information available when |«| € [1, 2), from [27]. This leads to slightly different Fourier

extremal problems. For instance, with A; and ¢y as above, consider the following;:

Extremal Problem 6.2.1 (EP3). Find

Dr o oo 00 +8 §y/* ad(a) da+45} ,§(a) da
= m ~ ~
geAi\(0}  2ming<a<i [g(e) + (1 — )

Extremal Problem 6.2.2 (EP4). Find

D~ suwp (1 —co)g(0) + % (§(0) +8§%ag(a) da + 4 §129() da)

geds maxp<a<i ([§(@)| +[9(1 — @)[)
g(0)>0

We show that D™ — ¢ and D™ + ¢ are lower and upper bounds for the average in Theorem
respectively (see Lemma[6.6 below). The simple choice of test function g(a) = max{(1—
|a]), 0} already shows that

0.981897 < D~ and D' < 1.083334.

To go further, we then numerically optimize the bounds. Note that the functionals in the
above extremal problems are not smooth, due to the maximum and minimum in the de-
nominators. Hence, we apply the principal axis method of Brent [I3], which is an algorithm
for unconstrained non-smooth optimization. We also applied our optimization routine to
the problems (EP1) and (EP2), and found a minor refinement in the fifth and sixth decimal
digits in the bounds from [I6], Corollary 2]|. It seems that these are very close to the
sharp values for the Fourier optimization problems. Under the hypotheses of Theorem
we find

1 b+¢
0.927819 + o(1) < ef F(a,T) da < 1.330144 + o(1).
b

In Section we prove a general result relating the integrals of Fg () to some extremal
problems, extending [16, Theorem 7]. Subsequently, we use it to relate the problems (EP3)
and (EP4) to Theorem (6.2l Furthermore, we provide effective bounds for the integral
of Fg(a) over any arbitrary interval, in Theorem In Section we show how to
numerically optimize the bounds for (EP1)-(EP4), completing the proof of Theorem

Remark. Analogues of Montgomery’s function F'(a)) have also been studied for other families
of L-functions. Recently, Chandee, Klinger-Logan and Li [26] proved an analogue of
for an average over a family of I'; (¢) L-functions, in the range |a| < 2. Therefore, assuming
GRH for this family and for Dirichlet L-functions, the conclusion of Theorem also holds
for this family, as ¢ — 0. See Section for more details.
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6.2 Fourier optimization and the average of Fyp(«)

For A > 1, let A be the class of continuous, even, and non-negative functions g € L!(R)

such that suppg < [-A, A]. For g € Aa, denote

1 A

ag(a) da+ QL g(a) da. (6.2.1)

palg) == 5(0) +2 f

0

From the definition of Fg(a) in (6.1.4)) and Fourier inversion, we have the convolution
formula, for R € L*(R) with R € L'(R):
0¢]

Z ¢Q/Q 2 Z <W> (I)(VYX)(T)(W;() = N@(Q)f Fo(o) }’%(a) da.

X (mod q) vx, V4 —00

A crucial tool is the asymptotic formula of Chandee, Lee, Liu and Radziwill:

Lemma 6.3 (c.f. [27, Theorem 1.2]). Assume GRH. Let € > 0. Then

e} —1
Fp(a,Q) =(1+0(1)) (f(a)+<1>(Q'“)2logQ<217rf @ (i) dx) )

—0

0 (2@ N/F(@)1ogQ) ,

laf, for |a] <1

uniformly for |a| <2 —e, as Q — ©, where f(a) =
1,  for |a]> 1.

By Plancherel’s theorem for the Mellin transform, the term
1 [* ~ -
2@ 0102 (5 [ Bl ac)
2 J_o

behaves like a Dirac delta at the origin (see the argument in [27, pp. 82-83]). Therefore,
for any fixed 1 < A <2 and g € Aa, from (6.2.2)), we obtain

o2 S N (””gQ) B(i9)B(i7y) = pal9) +o(1), (6.23)

X (mod q) vx» V&

as ) — o0.

The following problems are essentially those considered in [16, Section 2.1.1], which

correspond to the case A = 1. For any A > 1, we may consider the following variations:

Extremal Problem 6.3.1 (EP5). Let £ >0 and A > 1. Find

N
WX () :=inf > palg)),
j=1
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where the infimum is taken over N and all collections g1, go, ..., gN € Aa such that there

exist points &1, &2, ..., En € R, with

(= &) = Tjp, () (6.2.4)

HMZ

for all a € R.

Extremal Problem 6.3.2 (EP6). Let { >0 and A > 1. Find

N
Z 295(0) — pa(9)). (6.2.5)
where the supremum is taken over N and all collections g1, go, ..., gn € Aa such that there
exist points €1, &a, ..., En € R, with
N
Z a—¢&) <Ijp () (6.2.6)

for all a e R.

Extremal Problem 6.3.3 (EP7). Let b, f € R withb < 3, and A > 1. Find

N
W, alb, 8) = Z )+ 7i(pa(95) = 9;(0))), (6.2.7)
where the supremum is taken over N and all collections g1, g2, ..., gn € Aa such that there
exist points N1, N2, ..., Ny € R and values 11, 72, ..., Tnv < 1, such that
N
Z gila—n;) < I, g(@) (6.2.8)

for all a € R, and

h
LMZ

N

i )) > Z 7;9;(x), (6.2.9)
j=1

for all x € R.

The following result relates the problem of estimating integrals of Fg(«r) to the above
problems in Fourier analysis. This general result will allow us to obtain all our bounds for
these integrals. As we shall see, while the abstract formulation of these problems and the
general result in Lemma are analogous to those in [16], the novelty lies in the way we
may explore them, by taking advantage of the new possibilities with 1 < A < 2, and its
interplay with the other parameters. We anticipate that, when applying Lemma we will

usually have in mind the limit A — 27.
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Lemma 6.4. Assume GRH, letbe R and £ > 0. Let 1 < A < 2. Then, as Q — o, we have

b+¢

Wi() +0(1) < W;A(b, b+/0)+o0(1) < J Fop(a, Q) da < WX (0) + o(1). (6.2.10)
b

The proof is essentially that of [I6, Theorem 7], where the authors prove the analogous

result for integrals of F(a,T), with A = 1. We reproduce it below, in our context, for the

reader’s convenience.

Proof. Assume that the bound ( holds. We use it, combined with the convolution

formula (| and -, to ﬁnd

b+/4
f Fg(a) da
b
N

<;JR Fy(a) gj(a—b—¢;) da

L Sy /R re)en, (T W0BRY 50 (5

_Ncb(Q)jZl; ¢(q) gdq)%;%(@ h < o )‘IJ(wx)q’(wX)
L Se @) . v (O )los@Y 5

“Na(Q) ;12 4(a) X(gdm%ﬂ 2 )‘I’Wx)@(w

N

= Z pa(gj) +o(1)

j=1

This implies the upper bound in (6.2.10). To obtain the last inequality, we used the fact
that W(t), g;(t), and ®(it) are all non-negative (for ¢ € R).

For the lower bound, we first note that Wy (€) < W, (b, b+ {). To see this, take a
configuration that satisfies . Let 8 = b+{. Then, taking n; = £; +0, is veriﬁed,
and choosing 7; = —1 for all 7, is also verified. With these choices, reduces
to (6.2.5)), as desired. It remains to show that W alb, b+ ) +0(1) < bM Fq>(oz Q) do.
Given a zero % + iy of L(s, x) of multiplicity m., , denote k., := mqu)(z*yx)z. Assume
that (6.2.8)) and (6.2.9) hold. We again use them with and to obtain

Ma/Q) D Qg <(7X_7><)1°g@> (i, ) D(i7,)

02“
§ —_
.MZ
<
%

Jj=1 ¢ q) X (mod q) vx, V% 27
I SR SR (702)
“Fa@) 42 ¢(q)x(§dq) 0 L
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+ 2 Qinj(vx—v;)gj (WX)lOgQ> &;(MX)&)(W;)

, 2m
Tx 7é7x

1 W) vs | |
ZNq)(Q) quldq) > ){QJ(O)(l —Tg)%ﬂvx

2w

lo ~ ~
75 3 0 (W) B (i) B (i)

N
> (95(0) + 7i(palg;) — 9;(0))) + o(1).
1
This gives the desired lower bound. To obtain the last inequality, we used that, by (6.1.3)),

Z ¢q/Q Z Z - Z ¢Q/Q 2 Z‘I’Z'Yx = Na(Q).

(mod q) 7x (mod q) 7x

Remark. Note that if A; < Ag, then Aa, < Aa,. Therefore, V\/A (¢) is non-increasing with
A, while Wy (€) and W, 5 (b, B) are non-decreasing with A. For some properties regarding
monotonicity, subadditivity, and other basic facts on the above functions WK, we refer to
[16, Proposition 6], which continues to hold for any A > 1. Also, note that in the statement
of Lemmal6.4] the parameters b, £ and A are all free and independent. Here and henceforth,
the error term o(1) should be regarded as a function of @, which may depend on all other
fixed parameters (b, £ and A).

6.2.1 Triangle bounds

Here, we give simple, effective bounds for the integral of Fg(«) over an arbitrary interval,
by using (EP5) and (EP6) with the functions g; chosen as triangles. Our bounds have the
property of being continuous and non-decreasing with £. To begin, let A > 1. For 0 < § < A,

let
sin oz \ 2 —~ ||
Ks(x) = 5( 5 ) and Ks(a) = <1 — 6>+' (6.2.11)
Note that 5
1+%, if 0<d<1
Ks) = 37 ’ 6.2.12
pa(Ks) {5+;5, if 1<d<A (6:212)

Theorem 6.5. Assume GRH, let b= 1, and let £ > 0. Then, as Q — o0, we have
b+¢
C () +o(1) < | Fala,@) da < CT(0) +o(1)

b
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Figure 6.1: The upper bound (in blue) and the lower bound (in green) given in Theorem
compared with the g-analogue of the pair correlation conjecture (in yellow).

where
S S E - () s e ld) +s) ezt
cr(o - | min {252+ L - T8 - 4 (2088 -0 (8 -8} +9),

(14 0) (HM) } if0<?<1, withc:max{6—1/3£2/3; %};

12¢2 2—/4
(6.2.13)
and
_ 2
max {2652 4 (417 - 3 {8} + §+ (8} (- (8F v (8} -9),
c(0) = : ;e_;e}, 0> 2, (6.2.14)
(-1-%). if0<f<?

Proof. We would like to apply Lemma [6.4] with A — 2. To achieve this, we must obtain
continuous bounds for an arbitrary A € (1, 2). For simplicity, we will additionally assume
that % < A < 2 throughout the proof.

Upper bound. Following the strategy in [I6], we choose n > 0 large triangles, with two
additional small triangles at the beginning and end. In (EP5), we take N =n+2, g; = Ka
for2<j<n+1,and g1 = gni2 = %IA((;. These are the similar triangles with base 2A and
height 1, and base 26 and height %, respectively. Moreover, let

Aln—1)+20 =1, (6.2.15)

and consider the translates given by & = 0, fj =0+A(F—2)for2<j<n+1, and
&n+o = A(n — 1) + 26 = £. Then, condition is satisfied. We must now choose n and
§ in terms of £ and A, such that (6.2.15) holds. If £ € N, we may take (n,d) = (£, $).

This gives the upper bound
1+ ! £+ A—Q +1
3A2 12 ’
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0.6

021

1 2 3 4 5 6
Figure 6.2: A superposition of triangles of three different sizes gives a minorant of Ifg g,
producing a continuous lower bound. This is the construction for £ = 5.8, when A — 27,

If % ¢ N, we have the choices (n,d0) = ([%J +1, % {%}) or ([éj, % + % {%}) Note that
the first choice implies 0 < § < % < 1, while the second choice implies % <d <A <2
We take the minimum of both possibilities, and we must further divide the second choice
in cases, depending on whether or not § > 1, to apply (6.2.12)). Note that § > 1 if and only

if {é} > % — 1. This yields the upper bound W (¢) < C(¢), where

1 : J4 2
ot = (W“"U (A +0) +pa({t/A}), if {Z} <x-1L 5
2 {<M12+1) (A+0) +as(0/A) —ra(e/a), i {452 -1 219
T 3(p 2 _ 2 _ .
pal(a) ::( +1) (A3 +1)12A12A +12A 4)’ (@) = A1223—|—x<1—A—31A>
and
21,3 1,2
ra(z) = A12 —A2+(1—A)x+§—31A.

One can verify that, for all 1 < A < 2, ra(x) has a unique root in the interval (0, 1),
and, if A > %, this root is always greater than % — 1, since ra (% — 1) >0 and ra(1) < 0.
This root denotes the transition between the two choices of n and § above. In particular,
for A > 4/3 and ¢ > 0, note that C'{(¢) is a continuous function of ¢ and A. Therefore, for
fixed /¢, and separately analyzing the cases % e N and % ¢ N, we may let A — 2 in
and Lemma to obtain the upper bound in Theorem in the case £ > 1. The upper
bound for 0 < ¢ < 1 follows from taking A = 1 in Lemma [6.4] and applying directly the

bounds for W;"(¢) in [16, Theorem 9].

Lower bound. If 0 < £ < 2A, we may take the single triangle g, = IAQ/Q, with & = £/2.
This gives the lower bound Wi (¢) = ({—1— %)Jr if £ < 2 (where we have the trivial bound
of zero for £ < 6 —2v6 = 1.101...), and Wx(¢) > 20— 2 if 2 < £ < 2A. Letting A — 2,
we obtain these same lower bounds in Lemma for any 0 < ¢ < 4.

In the next step, we must diverge slightly from the strategy in [16] to obtain bounds
that are continuous, with respect to £ and A. For any £ > A, we combine triangles of three

different sizes, instead of two as before. First, we take n = 0 big triangles, followed by one
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medium triangle, and possibly one last small triangle. Let n = [%J —1,0 = % (1 + {%}),

and 0y = %{é}. Consider the functions g; = I/(\g for 1 < j<n, goy1 = %K(;l, and
Gnis = %Ks,. Take & = Aj for 1 < j < n, &1 = An+ 61, and Eppa = A(n + 1) + o,
The last pair (gn+i2, nt2) is only included when 2Kj,(0) — p(K5,) > 0, that is, when
{%} > %. Note that, when A > %, we have §; > % > 2, so that 2Ky, (0) — p(Kj,) is
always positive in this range. Additionally, note that £ = An + 2§; = A(n + 1) + 262, and
is satisfied.

The above configuration, in (EP6), yields W, (¢) = C s (£), where

() - { (ke +1) (& +0) +ua({0/A)) it
* (5Az +1) (A +0) +va({t/A}) + wa({t/A})+, if {

' (6.2.17)

Dl s
Do o
e

} <
} =

—IA3(z +1)3 +3A% (22 +1) = 3A(z + 1) + 22
ua(z) = oA ;

T — 2z -
va(z) = (@=1) (3?22 D+ 4); and  wa(7)

_ 6Ax (—%A2x2 + Ax — 1)
B 12A

Note that, for 0 <z < 1and 1 < A <2, wa(z) > 0 if and only if x > %. Moreover, we
have that 0 < % -1< % < 1. In particular, C5 (¢) is a continuous function of £ and A,
and we may take A — 2 to obtain the lower bounds in Theorem [6.5] In the lower bound
for £ > 2, the maximum is attained by the second function for 2 < £ < ¢;, and by the first
function for ¢ > ¢1, where ¢1 = 3.609. .. O

Remark. An important technical feature of the bounds in Theorem is their continuity,
which helps to take A — 2. To achieve this continuity for an arbitrary A € (4/3, 2), we
must take precise configurations of triangles, slightly different from those considered in [16],
and take care with the cases that arise depending on the size of A. As £ — oo, it is clearly
convenient to take A as large as possible, as we have the multiplying factors (1 + 3%)

However, for some fixed values of £, one could do slightly better than stated in Theorem 6.5
by using the general bounds in (6.2.16)) and (6.2.17)) and choosing an optimal A in (4/3, 2).

6.2.2 Asymptotic bounds

Recall that

§(0) + 85, ag(a) da + 4§ , () da

D" := inf - = =
9eA1\{0} 2minp<a<t [g(a) + g(1 — a)|
and
. (1—co)g(0) + % [§(0) +8§)% ag(a) da+47} ,3(a) da]
1= sup = =
ged maxo<a<1 (|9(@)] + [g(1 — @)])
g(0)>0

In this section, we begin the proof of Theorem by connecting the integrals of Fg(«)

to the above extremal problems. The main idea is to consider, in (EP5) and (EPT7), copies
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of a single function g, instead of a triangle, so that we may then optimize over admissible

functions.

Lemma 6.6. Assume GRH, and let b = 1. For sufficiently large fixed £, as Q — o0, we

have

b+¢
D—6+0(1)<£J Fo(a,Q) da < D' + ¢+ o(1).
b

Proof. Throughout the proof, let g € A;, so that suppg < [—1,1]. For 1 < A < 2, consider
the dilation ga(a)=Ag(Aa), so that ga € Aa. Again, we must first obtain bounds for an
arbitrary A € (1, 2), with the goal of taking A — 27 at the end.

Upper bound

Assume that minp<a<i1 [g(@) + (1 — «)| # 0. Then, since g(0) > 0 and g is continuous,
we must have g(a) + g(1 — ) > 0 for all « € [0, 1], and by multiplying by an appropriate

constant, we may assume that

[min, (9(a) +9(1 — ) = 1. (6.2.18)
In (EP5), given ¢, let N = [ ] + 1. Consider the N functions g; = ga, for 1 < j < N, and

take the translates §; = A(j —1). Then, by (6.2.18 m, the fact that supp g € [—1, 1], and that

g is even, we obtain

:g({%}) +§<1_{%}) (6.2.19)

foral0 < a <A [%], in particular for 0 < o < £. By an argument of Carneiro, Chandee,
Chirre, and Milinovich (adding a finite number of triangles if necessary, see [16 p. 18]) we
may assume that this sum is non-negative for all «, and therefore is satisfied. This
gives the bound

WHall) < pA(AgA) 0+ 0(1),

where the implied constant may depend on g, but not on £ or A. Note that the function

1 1
A palon) 1 §(0H2A2JAag(a) damAf 3(a) da
A A 0 x

is continuous for 1 < A < 2. Then, we may take A — 2 in Lemma with the above
bound, to obtain, for any fixed € > 0 and ¢ sufficiently large,

b+¢
J F3(a,Q) da < £ (D" +¢) + o(1),
b
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as @@ — o0. This proves the upper bound in Lemma [6.6]

Lower bound

Here, we will use the framework of (EP7). We may assume, without loss of generality,
that g(0) > 0, and that maxo<a<i [g(c@)] + [g(1 — )| = 1. For a fixed b > 1 and large ¢, let
B8 =b+{, and write

b+L

3 b
Fa(e, Q) da — 1/2J Fal, Q) da —J Fa(a, Q) da. (6.2.20)
b -8 0

Let n = {gJ In (EP7), let N = 2n—1, and take §j = ga and 1; = A(n—j), for 1 < j < N.
Define

m(n) = min D, (x),
zeR

where

O sin((n + 1/2)x)
Dy (x) = etk — -
( an sin(z/2)

is the Dirichlet kernel. From [I6, Equation (2.37)], it is known that

m m
lim ﬂ = 2¢p, and moreover, ‘(n) — 2¢q
n—w n n

1
— 6.2.21
= (6.2.21)

where ¢q is defined in (6.1.1]). Let

T R (2n —1)g(x)  2n—1
g(z)#0

Then, (6.2.9) is automatically satisfied, and we can verify (6.2.8)) (where b = —3). This
gives the bound

m(n —1)

W, a(=8,8) = (2n—1) (Ag(O) B e——

(palga) Ag<o>>) |

This implies, by (6.2.21)), that

W_A(_B7 B) 5
—rA s R (Ag(0)(1 - co) + o pa(ga)) — OD),
where the implied constant may depend on g but not on A or 8 (note that pa(ga) can be
bounded in terms of g, uniformly in A). Now, we apply Lemma and (6.2.20)), and let
A — 2 as before. For any fixed ¢ > 0 and b > 1, we obtain, for sufficiently large fixed ¢,

that

b+4
L Fo(a,Q) da > £ (D™ — ) + o(1),

as () — o0, as desired. O
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6.2.3 TI'i(¢)-analogues: an average over automorphic L-functions

In this section, for the convenience of the reader, we briefly define the I';(¢)-analogue
of F(«), and show how it also satisfies the conclusions of Theorem and Theorem
This is the framework of Chandee, Klinger-Logan and Li in [26], to which we refer for more
details. The authors consider a large family of GL(2) L-functions, as follows. Let k and ¢
be positive integers, with k& > 3. Consider the subgroups of G L3 (Z)

To(q) = {(Z Z) s ad —be =1, CEO(modq)},
I'i(q) = {(CCL Z) elo(g): a=d= 1(modq)}.

Let S(I'o(q), x) be the space of cusp forms of weight k& > 3 for I'g(¢) and nebentypus char-

and

acter x (mod ¢). Let H, < Si(I'o(q), x) be an orthogonal basis of S;(I'g(q), x) consisting
of Hecke cusp forms, normalized so that the first Fourier coefficient is 1. It is known that
each f € H, has an associated L-function L(s, f). Assume GRH for all the L(s, f) and for
all Dirichlet L-functions. Then, we define the I'; (¢)-analogue of F'(a) as

2

* o 2F(k — 1) w a
T ) = s a2 2 7P L3)a™
X( 1) (- )

where

" 2T(k—1)

N, =—— D(
R I P IfHZZ‘ ] -
x(=1)=(-1)*

and the inner sums run over the ordinates of all non-trivial zeros 1 + v of L(s, f). Note
that

STi@) = D SeTola); ),

X (mod q)

where Si(T'1(¢)) is the space of holomorphic cusp forms for I'1 (¢). Therefore, we may think
of F§(a, q) as the I'(¢)-analogue of F(a).

In [26, Theorem 1.1], the authors show that the same asymptotic formula in Lemma
holds, with F§(c, ¢) replacing Fg(a, @), as ¢ — co. Fourier inversion yields, as in (6.2.2)),

olq) (4m)F=t zold fg HfH2 Z ( ><1>( 7))@ (i)
x(=1)=(- )

= Ng(q) fR Fi(a, q) R(a) da.
Then, the same argument in the proof of Lemma [6.4] shows that, for any fixed b > 1, £ > b,
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and 1 < A <2,

b+¢
W, A, b+1) +0(1) < f F§(a, q) da < WX (0) + o(1),
’ b
i — . .
as ¢ — 0. The bounds for Wy (¢) and W, 5 (€), given in the proofs of Theorem and
Theorem now immediately imply the analogous theorems for Fj(«, ¢), with the same

constants.

6.3 Numerically optimizing the bounds

We must optimize the functionals given in (EP1)-(EP4), over functions in the class Aj;.
First, we transform these optimization problems over A; into unrestricted optimization
problems over R where d € N. By a result of Krein [I, p. 154], if g € Aj, then
g(z) = |h(x)|?, for some h € L?(R) with supph < [-1,1]. We may then search over

functions of the form ?L(x) = p(:Jc)JI[_; 17, where
272

d
p(x) = Z a;z’
1=0

is a polynomial of degree d. The numerators in (EP1)-(EP4) are now bilinear forms

d
Z CijQiQj
i,j=0
in the coefficients of p. To implement these bilinear forms, one may compute the values of
¢;j by numerically evaluating the numerators of the functionals on the polynomials p;;(x) :=
2 4+ 27, for 0 < i, j < d. The maxima and minima in the denominators in (EP1)-(EP4)

may be computed via a simple 1-dimensional optimization routine.

We proceed to optimize over the coefficients a; via the principal axis method of Brent
[13]. This is an iterative algorithm without derivatives, which requires two initial values for
all coefficients a;. We take d < 12, run the algorithm with many different randomly-chosen
initializations, and additionally run it with initializations found previously from running

this procedure with lower degrees. In this way, we found the following functions:

69x* 1572

10 1000 M

p1(x) = 20022 + 815210 — 15228 — 592° +
which shows Dt < 1.077542 in (EP3); and
po(z) = —2° 45,
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Figure 6.3: The function /f;,(.l‘) = p1(w)l[_1/2,1/2] is a perturbation of Ij_; /5 1/9]-

which shows D~ > 0.982144 in (EP4). This proves?] Theorem [6.2] We also found

274328 B 15225  303z% 72

= —3855x12 + 2203210 — — 41
p3(@) v 2o 10 5 " l00 20 T
which shows C* < 1.330144 in (EP1); and
250
pa(x) = —2% + TR

which shows C~ > 0.927819 in (EP2). We also ran this routine with d = 14, and found no

improvement in the first six decimal digits with respect to the above functions.

6.3.1 Remarks on a larger class of functions

Let A be the class of continuous, even, and non-negative functions g € L'(R), such that
g(a) < Ofor |a| = 1. Note that A; < A. Cohn and Elkies [34] first used this class A to obtain
upper bounds for the sphere packing problem. Recently, Chirre, Gongalves, and de Laat
[30] also used it to sharpen bounds in the theory of the Riemann zeta and other L-functions.
With this more general framework, the problems considered in [30] are reduced to convex
optimization problems, which the authors solve numerically via semidefinite programming
(see [7] for background on semidefinite programming). Furthermore, Chirre, Pereira, and de
Laat [33] used a similar framework, with semidefinite programming, to obtain fine estimates
for primes in arithmetic progressions, following a Fourier optimization approach by Carneiro,
Milinovich, and Soundararajan [22]. In all these works, the authors use these numerical

”2, where p is a polynomial

techniques to construct test functions of the form g(x) = p(x)e™
of a certain degree.

In [16], the authors also build their theoretical framework using this larger class A, while
working with the simpler class .A; to obtain their bounds. We explored the optimizations

problems with this larger class, with the purpose of refining Theorem [6.1] and Theorem

2 The numerators in the functionals can be computed exactly in rational arithmetic, in terms of ¢o. The
maximum and minimum in the denominators, and the value of ¢y given in , may be easily verified
to the desired precision, for instance by first isolating the critical points and then applying the bisection
method, using interval arithmetic.
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using the semidefinite programming methods described in [30]. However, this did not lead
to any improvement over the results obtained with bandlimited functions in A1, even after
using polynomials of large degrees, and significantly larger than the degree used in [30].
A similar situation occurred in Chapter [3] where the aforementioned results in [22] and
[33] were further extended to primes represented by quadratic forms. Therein, bandlimited
functions also outperform polynomials times gaussians, unless one uses much larger degrees,

which might not be feasible.

Nevertheless, for completeness, we will briefly describe how to construct these func-
tions with semidefinite programming in the present framework, and the results obtained.

Henceforth, assume GRH. In [57], the authors show that, for any fixed, small § > 0, we have

F(a,T) =

N

= |a| = o(1), (6.3.1)

uniformly for 1 < |a| < 3 — 4, as T — 0. This gives a conditional improvement over the
asymptotic formula , and has been used to refine some estimates under GRH (e.g.
in [30, 57]). Using (6.3.1), by an argument similar to that of Section and [16], Section
2.4], we find the following: for fixed b > 1 and ¢ sufficiently large,

1 b+¢
EL F(a,T) da > Ji(g) — e+ o(1),

as T — o0, and
1 b+£
i | Fae@ daz i) - o)
b
as Q — oo, for any g € A. Here, we denote

(1—c0)g(0) +co (Pl(g) +20%2 (3 — ) §(a) da)

J = a
1(9) maxo<a<i Yo [9(n — @)

, (6.3.2)

and

(1— co)g(0) + % (§(0) +8§5” agla) da + 4§} ,3(a) da)

J = g
2(g) maxo<a<i Z?:o [g(n — o)

(6.3.3)

We may take the parameter m to be any positive integer, and, as in [16, Section 2.4.2],
the bounds improve as m — oo. Note that, if g € Ay, then J; and Jo simplify to the
functionals in (EP2) and (EP4), respectively. Furthermore, note that, since is an
inequality (instead of an asymptotic equality as in and Lemma, we used the sign
restrictions of g € A to obtain the above bound with .

In contrast to [30], the objectives J; and Jy are not linear (or even smooth). To trans-
form it into a semidefinite program, we approximate our problem by one with a linear
objective and additional linear inequality constraints. Let N be a positive integer, and let

{1, ag, ..., an} be a partition of the interval [0, 1]. Then, multiplying g by an appropriate
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| d [ 20 40 60 70 [ g(e)=010—o])+ |
Ji(g) 10.9211...]0.9236... [ 0.9245... [ 0.9248. .. 0.9275. ..
Jo(g) [ 0.9748 ... 1 0.9774... 1 0.9784... | 0.9788... 0.9818.. ..

Table 6.1: Semidefinite programming bounds for the approximations (with m = 3 and
N = 55) of J; and Jo, for several parameters d, compared with a simple triangle bound.
The constructed polynomials have degree 4d + 2.

constant, we may replace the denominators of (6.3.2]) and (6.3.3) by 1, and incorporate the

system of inequality constraints

When N is sufficiently large, this results in a reasonable approximation in practice.

We now follow the notation and argument in [30} Section 4], to which we refer for details.
By taking dilations, we may relax the condition g < 0 for || = 1, to the same condition over
|a| = R, where R > 1 is some parameter (after also taking dilations in the definitions of J;
and J3), and we may assume g(0) = 1. We see this as a bilevel optimization problem, where
the outer problem is a 1-dimensional problem over R > 1, and the inner problem optimizes

2 . .
™ where, as before, p is an even polynomial. For a fixed

over such a function g(z) = p(z)e
R, functions g of this form, that are non-positive in [R, o), and whose Fourier transform

is non-negative, can be written in terms of positive-semidefinite matrices, as follows.

Let d € N. Let X9, X3, X4 be positive-semidefinite matrices of size (d + 1), and let

v(u) = (Lglﬂ(ﬁu)7 e L;l/z(wu)> e R4,

where L,;l/ % is the Laguerre polynomial of degree k& with parameter -1/2. Then, we may

write

2 2

g(x)= (R*=z*) v(z*) Xav(a?) e™™ ; §(x) = (v(2®)" Xzv(2?) + 2% v(2?) Xy v(a?)) e,

Note that g is a polynomial of degree 4d + 2, times a Gaussian function. The fact that g(x)
is the Fourier transform of ¢ is a linear condition over the entries of X5, X3, and X4 in

RY*! which we also write in terms of the Laguerre basis v(u).

This is now a semidefinite program, for which we use the high-precision solver sdpa-gmp

[85]. In Table 1, we show the maxima of (6.3.2]) and (6.3.3)) for several values of d, compared

with the bound from the triangle function g(a) = (1 — |a|)+ € A;. In our computations,
we take m = 3 in the definitions of J; and J, and N = 55 in the partition of [0, 1].
Further experiments with other values of m and N did not significantly alter the results.

For comparison, the authors use d = 40 in [30].
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Chapter 7

Appendices

Appendix A: Some useful estimates

Lemma 7.1. Let x,y > 1 be two parameters. Consider the radial function G : R? — R
defined by
.2
win 2,1, T 0 < o),
Yy
0, if r> (x4 y)/2

G(r) =

Then G € L*(R?), and its Fourier transform G satisfies the following properties:

1. For £eR? and € # 0,

N /4
G(e)] « % (7.0.1)
2. For £ e R? and |¢] > 1,
~ 1 3/4
G(9)] « T <1 + ‘”y) (7.0.2)

3. For £ =0,

A(0) = LA P
G(0) = (x—i— 2>7T 5 (7.0.3)
Proof. Tt is clear that G' € L'(R?). Since G is a radial function, it follows that (see [65, p.
129)),

a0

G(¢) = QWJ r G(r) Jo(27r|&]) dr, (7.0.4)
0

for ¢ € R?, where .Jy is the Bessel function of order 0. Since Jo(0) = 1, a simple computation

shows (7.0.3). Let us start proving the estimate (7.0.1). For £ # 0, we split the integral in

(7.0.4) into the ranges 0 < r < 1/|¢| and 1/|¢| < r < o0. Using the estimates |Jp(t)| « 1 and

|G(r)| <1, it follows that

i .
J rG(r) Jo(2arle) dr| < o2 (7.0.5)
0
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To estimate the second integral, by [64, 8.451-1] we recall that

) — (;)1/2{&8@ S %sin(i- T+ O<t12>}

for [¢| » 1. Then, using that |G(r)| <1, §; G(r)/r?? dr < o0, and integration by parts:

JOO rG(r) Jo(2nr|E|) dr

/€]
— —ﬁ joo (r1/2G(r))/ sin(2rr|§] — §) dr
2m2|€[3/2 Jy e
! " G(r) / T . 1 1
+ W L/m (7,1/2> COS(Q?TT’f‘ - Z) dr + O| min W’ @ .
(7.0.6)
Therefore,

f r G(r) Jo(2nr|£]) dr
1/l

e s [ ](C2)
|£|3/2L§|\(r (T))‘dH\SP/QLAQ rl/2

1 “1G(r)
<,

P12
Spliting the above integrals according to the definition of G, and using the mean value
theorem, it follows that, for 1/|¢| < v/ + y, we have

<

dr —i—min{ 1 1}
|£15/27 [€]2

* 1/2 vt 1
J ‘r G(r)’dr—i-?.

dr +
0 €

1
SANTEEE

1/4
« (xg’f/)? (7.0.7)

Joc rG(r) Jo(2nr|E|) dr
1/)¢|

Combining (7.0.5) and (7.0.7) we obtain (7.0.1) in the case 1/|¢| < (z + y)/2. When
1/|¢| > (z 4+ y)'/2, we bound as in (7.0.5) to obtain

(z + )/

(z+y)'/?
27rf r G(r) Jo(2rr)E]) dr i

0

G(e)| =

Kz +y<L

This conclude the proof of the estimate ((7.0.1)). Now, let us prove ([7.0.2). Suppose that
|€] = 1. We split the integral in (7.0.4) as in the previous case, and we bound the first

integral as follows:

el )
« f rPdr « —. (7.0.8)
0 €

On the other hand, in ([7.0.6) we split the last integrals (depending on the value of 1/[¢] < 1)

e
JO r G(r) Jo(2rrE]) dr
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and use integration by parts (one more time). In this way, we obtain that

1 1'3/4
3 FEE (1 + y) (7.0.9)

f rG(r) Jo(2nr|£]) dr
1/]€]

Then, combining (7.0.8)) and (7.0.9) we obtain ((7.0.2)). O

Lemma 7.2. Let K be an imaginary quadratic field, and let q be an integral ideal. Then,

2 log Np « +/log Ng.

Proof. Using the factorization law of primes in imaginary quadratic fields [69, p. 57], one

can see that, for each k > 1,

log Np log Np log Np log p
2w 2| 2 e | T 2 ez | € 2 e
pla (Np) p pla (Nb) p pla (Nb) pINg P
Np=p Np=p?

It is clear that the sum over k£ > 3 in the above expression contributes O(1), and the sum
when k& = 2 is bounded by the sum when k£ = 1. Let us analyze the latter case. Assume
that Nq > 3. We denote by w(n) the number of distinct positive integer prime factors of n,
and by p, the n-th prime number. Since p, < Cnlogn for some C' > 0, and the function

y — y *2logy is eventually decreasing, it follows that

Z log p < 2 log p < Z lCi/gﬁp « 4/w(Nq) log(w(Nq)),

p|Ngq VP P<Pu(Nq) VP p<Cw(Nq) log(w(Nq))

where we used integration by parts in the last step. We conclude our desired result using

the classical estimate for w(n) (see [84, Theorem 2.10)):

logn
w(n) « Toglog
]
Appendix B: Variations of Montgomery’s weight
Assume RH. Let % <op < %, and define
40’% ~ 2 Y,
o (1) 1= —5—0— d F,(a):= 70w, (v —+'). (7.0.1

W) 1= gty an (@) TlogTquM way (7 = 7)- (7.0.10)

Note that we recover Montgomery’s function F'(«) by taking op = 1. Since

Woo (y) = 2mage T,
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we have the identity

2
dy. (7.0.11)

Z Tia'ye%ry'y

9 o0
~ 4méog
—47o
F,y(a) e—4moolyl
0<y<T

- TlogT

—o0

In particular, F,, (a) > 0, and F}, is even. Following Montgomery [81] (see also [58]), we

have the following asymptotic formula for Fy, (c).

Proposition 7.3. Let % <o0g < %, and define }*N}O (a) as in (7.0.10). We have
Eyy(a) = ooT 290 10g T(1 + 0(1)) + |a] + o(1),

uniformly for 0 < |a| <1, as T — .

3

Proof. In Montgomery’s explicit formula, we take o = % + 0 to obtain, for any % <09 <3

and z > 1,

el _ A(n)noo—1/2 A(n)
2 _—_— = — a0 _— — a0 _
‘70; o2+ (t— )2 DY it 27 ) n/2+o0it

n<x n>x

+ x—ao+it(10g7_ + 0(1)) + 0(1'1/27'_1),

where 7 = |t|+2, and the implied constants depend only on o (which we henceforth assume
to be fixed). We write the above as L(x, t) = R(x, T'). Note that

e}
1 2 1 27
dar = 21 _ o
J [of + (¢t = 7)*][of + (t —7')?] o0 402+ (y—4)2 4o (v=1")
—00

Then, taking the absolute value, squaring, and integrating, following Montgomery we obtain

T

2 . ’ 1 ~
[ 1m P 4= 2T 3 a0 () + 0108 T) = - Fay(0) TIog T+O(log T).
ago ) o)y}
0 0<y,¥'<T
(7.0.12)

T
Now, let us analyze § |R(z, T')|>. For the Dirichlet series, using [83 Corollary 3], we obtain
0

2
—0 A(n)nao—l/Q o A(n) —20 A(n)2
00 Z: — - 200 Z A rosTi dt =x 490 Z} e (T + O(n))
nsxr n>x nssxr

C—

o A(n)?
+ 277 ) nl(w)(m (T + O(n)).
n>x

(7.0.13)
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Note that

2290 (209logx — 1) + 1

7290 (20 log z + 1)
4o '

2
dog

x o0
Jy%o_l logy dy = and jy‘l_%o logy dy =
1 x

Then, by the prime number theorem with error term, (7.0.13)) equals

Tlogx

+O(T) + O(zlog x).
o
We note that on the left-hand side of (7.0.13)), we may use an estimate of Goldston and
Montgomery [58, Lemma 7] instead of [83 Corollary 3] to replace the error term O(x log z)
with O(T'y/log x). Continuing with our proof, we have
r Tlog”>T + O(Tlog T
J|x_”0+it(log7 Lo ar = Llos T+ OTlogT)
0

.%'200

If we choose x = T for 0 < a < 1 — ¢, then following Montgomery’s argument the above

estimates imply that

R(T*, T) = Tlog T (TQ‘MO log T (1 + o(1)) + = + o(1)> .

00

We combine this with (7.0.12]) to obtain the desired result for |a| < 1 —e. As remarked
above, by the argument of Goldston and Montgomery [58, Lemma 7], this can be extended
uniformly to |a| < 1. O

We also note that the following estimate holds.

Proposition 7.4. Let % <o < %, B > 1, and define ﬁgo(a) as in ([7.0.10). Then,

B
J}T}U(a) da « .
1

Proof. Using an argument of Goldston [53, Lemma A], this follows from Proposition
and the fact that Fy,(a) > 0. O
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