
09/06/2021
10:30
virtual/à distância
Palestrante: Goo Ishikawa
Os interessados devem solicitar o link de transmissão pelo e-mail Este endereço de email está sendo protegido de spambots. Você precisa do JavaScript ativado para vê-lo.
Responsável: Igor Chagas Santos (Este endereço de email está sendo protegido de spambots. Você precisa do JavaScript ativado para vê-lo.)
Resumo: Developable surfaces, which are isometric to the plane, in Euclidean 3-space are roughly classified into cylinders, cones and tangent developables. A tangent developable is ruled by tangent lines to a space curve and has singularities at least along the space curve, the edge of regression. Two surfaces, or two "frontals" in general, are called parallel if they have common normal lines. In this lecture I will speak on singularities appearing in parallels to tangent developables in Euclidean spaces of arbitrary dimensions, and show the exact classification of their generic singularities for curves in 3 or 4 dimensional Euclidean spaces.