Eventos Externos

27/09/2022

10:00

online / à distância

Palestrante: Rodrigo Mendes Pereira

Responsável: Igor Chagas Santos (igor.chs34@usp.br)

Salvar atividade no Google Calendar

Abstract: This work is devoted to study of the relations between topological and metric properties of germs of real surfaces, obtained by analytic maps from R^2 to R^4. We show that for a big class of such surfaces, the Lipschitz normal embedding property implies the triviality of the knot, presenting the link of the surfaces. We also present some criteria of Lipschitz normal embedding in terms of the polar curves. 

Os interessados podem obter o link para a transmissão através do email brsingtheorywebinar@gmail.com

CONECTE-SE COM A GENTE
 

© 2025 Instituto de Ciências Matemáticas e de Computação